zjowowen's picture
init space
079c32c
from typing import Any, Union, Optional
import gym
import torch
import numpy as np
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.envs.common.common_function import affine_transform
from ding.utils import ENV_REGISTRY
from ding.torch_utils import to_ndarray, to_list
@ENV_REGISTRY.register('pendulum')
class PendulumEnv(BaseEnv):
def __init__(self, cfg: dict) -> None:
self._cfg = cfg
self._act_scale = cfg.act_scale
self._env = gym.make('Pendulum-v1')
self._init_flag = False
self._replay_path = None
if 'continuous' in cfg.keys():
self._continuous = cfg.continuous
else:
self._continuous = True
self._observation_space = gym.spaces.Box(
low=np.array([-1.0, -1.0, -8.0]), high=np.array([1.0, 1.0, 8.0]), shape=(3, ), dtype=np.float32
)
if self._continuous:
self._action_space = gym.spaces.Box(low=-2.0, high=2.0, shape=(1, ), dtype=np.float32)
else:
self._discrete_action_num = 11
self._action_space = gym.spaces.Discrete(self._discrete_action_num)
self._action_space.seed(0) # default seed
self._reward_space = gym.spaces.Box(
low=-1 * (3.14 * 3.14 + 0.1 * 8 * 8 + 0.001 * 2 * 2), high=0.0, shape=(1, ), dtype=np.float32
)
def reset(self) -> np.ndarray:
if not self._init_flag:
self._env = gym.make('Pendulum-v1')
if self._replay_path is not None:
self._env = gym.wrappers.RecordVideo(
self._env,
video_folder=self._replay_path,
episode_trigger=lambda episode_id: True,
name_prefix='rl-video-{}'.format(id(self))
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
self._action_space.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
self._action_space.seed(self._seed)
obs = self._env.reset()
obs = to_ndarray(obs).astype(np.float32)
self._eval_episode_return = 0.
return obs
def close(self) -> None:
if self._init_flag:
self._env.close()
self._init_flag = False
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def step(self, action: np.ndarray) -> BaseEnvTimestep:
assert isinstance(action, np.ndarray), type(action)
# if require discrete env, convert actions to [-1 ~ 1] float actions
if not self._continuous:
action = (action / (self._discrete_action_num - 1)) * 2 - 1
# scale into [-2, 2]
if self._act_scale:
action = affine_transform(action, min_val=self._env.action_space.low, max_val=self._env.action_space.high)
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
obs = to_ndarray(obs).astype(np.float32)
# wrapped to be transfered to a array with shape (1,)
rew = to_ndarray([rew]).astype(np.float32)
if done:
info['eval_episode_return'] = self._eval_episode_return
return BaseEnvTimestep(obs, rew, done, info)
def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
if replay_path is None:
replay_path = './video'
self._replay_path = replay_path
def random_action(self) -> np.ndarray:
# consider discrete
if self._continuous:
random_action = self.action_space.sample().astype(np.float32)
else:
random_action = self.action_space.sample()
random_action = to_ndarray([random_action], dtype=np.int64)
return random_action
@property
def observation_space(self) -> gym.spaces.Space:
return self._observation_space
@property
def action_space(self) -> gym.spaces.Space:
return self._action_space
@property
def reward_space(self) -> gym.spaces.Space:
return self._reward_space
def __repr__(self) -> str:
return "DI-engine Pendulum Env({})".format(self._cfg.env_id)
@ENV_REGISTRY.register('mbpendulum')
class MBPendulumEnv(PendulumEnv):
def termination_fn(self, next_obs: torch.Tensor) -> torch.Tensor:
"""
Overview:
This function determines whether each state is a terminated state
.. note::
Done is always false for pendulum, according to\
<https://github.com/openai/gym/blob/master/gym/envs/classic_control/pendulum.py>.
"""
done = torch.zeros_like(next_obs.sum(-1)).bool()
return done