|
import gym |
|
import torch |
|
import numpy as np |
|
from ditk import logging |
|
from ding.model.template.decision_transformer import DecisionTransformer |
|
from ding.policy import DTPolicy |
|
from ding.envs import BaseEnvManagerV2 |
|
from ding.envs.env_wrappers.env_wrappers import AllinObsWrapper |
|
from ding.data import create_dataset |
|
from ding.config import compile_config |
|
from ding.framework import task, ding_init |
|
from ding.framework.context import OfflineRLContext |
|
from ding.framework.middleware import interaction_evaluator, trainer, CkptSaver, offline_data_fetcher_from_mem, offline_logger, termination_checker |
|
from ding.utils import set_pkg_seed |
|
from dizoo.d4rl.envs import D4RLEnv |
|
from dizoo.d4rl.config.hopper_medium_dt_config import main_config, create_config |
|
|
|
|
|
def main(): |
|
|
|
|
|
logging.getLogger().setLevel(logging.INFO) |
|
cfg = compile_config(main_config, create_cfg=create_config, auto=True) |
|
ding_init(cfg) |
|
with task.start(async_mode=False, ctx=OfflineRLContext()): |
|
evaluator_env = BaseEnvManagerV2( |
|
env_fn=[lambda: AllinObsWrapper(D4RLEnv(cfg.env)) for _ in range(cfg.env.evaluator_env_num)], |
|
cfg=cfg.env.manager |
|
) |
|
|
|
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) |
|
|
|
dataset = create_dataset(cfg) |
|
|
|
cfg.policy.state_mean, cfg.policy.state_std = dataset.get_state_stats() |
|
model = DecisionTransformer(**cfg.policy.model) |
|
policy = DTPolicy(cfg.policy, model=model) |
|
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) |
|
task.use(offline_data_fetcher_from_mem(cfg, dataset)) |
|
task.use(trainer(cfg, policy.learn_mode)) |
|
task.use(termination_checker(max_train_iter=5e4)) |
|
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000)) |
|
task.use(offline_logger()) |
|
task.run() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|