gomoku / DI-engine /dizoo /dmc2gym /config /dmc2gym_dreamer_config.py
zjowowen's picture
init space
079c32c
from easydict import EasyDict
from ding.entry import serial_pipeline_dreamer
cuda = False
cartpole_balance_dreamer_config = dict(
exp_name='dmc2gym_cartpole_balance_dreamer',
env=dict(
env_id='dmc2gym_cartpole_balance',
domain_name='cartpole',
task_name='balance',
frame_skip=1,
warp_frame=True,
scale=True,
clip_rewards=False,
action_repeat=2,
frame_stack=1,
from_pixels=True,
resize=64,
collector_env_num=1,
evaluator_env_num=1,
n_evaluator_episode=1,
stop_value=1000, # 1000
),
policy=dict(
cuda=cuda,
# it is better to put random_collect_size in policy.other
random_collect_size=2500,
model=dict(
obs_shape=(3, 64, 64),
action_shape=1,
actor_dist='normal',
),
learn=dict(
lambda_=0.95,
learning_rate=3e-5,
batch_size=16,
batch_length=64,
imag_sample=True,
discount=0.997,
reward_EMA=True,
),
collect=dict(
n_sample=1,
unroll_len=1,
action_size=1, # has to be specified
collect_dyn_sample=True,
),
command=dict(),
eval=dict(evaluator=dict(eval_freq=5000, )),
other=dict(
# environment buffer
replay_buffer=dict(replay_buffer_size=500000, periodic_thruput_seconds=60),
),
),
world_model=dict(
pretrain=100,
train_freq=2,
cuda=cuda,
model=dict(
state_size=(3, 64, 64), # has to be specified
action_size=1, # has to be specified
reward_size=1,
batch_size=16,
),
),
)
cartpole_balance_dreamer_config = EasyDict(cartpole_balance_dreamer_config)
cartpole_balance_create_config = dict(
env=dict(
type='dmc2gym',
import_names=['dizoo.dmc2gym.envs.dmc2gym_env'],
),
env_manager=dict(type='base'),
policy=dict(
type='dreamer',
import_names=['ding.policy.mbpolicy.dreamer'],
),
replay_buffer=dict(type='sequence', ),
world_model=dict(
type='dreamer',
import_names=['ding.world_model.dreamer'],
),
)
cartpole_balance_create_config = EasyDict(cartpole_balance_create_config)
if __name__ == '__main__':
serial_pipeline_dreamer(
(cartpole_balance_dreamer_config, cartpole_balance_create_config), seed=0, max_env_step=1000000
)