gomoku / DI-engine /dizoo /dmc2gym /entry /dmc2gym_onppo_main.py
zjowowen's picture
init space
079c32c
import os
from easydict import EasyDict
from functools import partial
from tensorboardX import SummaryWriter
import dmc2gym
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator
from ding.model import VAC
from ding.policy import PPOPolicy
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, BaseEnvManager
from ding.config import compile_config
from ding.utils import set_pkg_seed
from dizoo.dmc2gym.config.dmc2gym_ppo_config import cartpole_balance_ppo_config
from dizoo.dmc2gym.envs.dmc2gym_env import *
class Dmc2GymWrapper(gym.Wrapper):
def __init__(self, env, cfg):
super().__init__(env)
cfg = EasyDict(cfg)
self._cfg = cfg
env_info = dmc2gym_env_info[cfg.domain_name][cfg.task_name]
self._observation_space = env_info["observation_space"](
from_pixels=self._cfg["from_pixels"],
height=self._cfg["height"],
width=self._cfg["width"],
channels_first=self._cfg["channels_first"]
)
self._action_space = env_info["action_space"]
self._reward_space = env_info["reward_space"](self._cfg["frame_skip"])
def _process_obs(self, obs):
if self._cfg["from_pixels"]:
obs = to_ndarray(obs).astype(np.uint8)
else:
obs = to_ndarray(obs).astype(np.float32)
return obs
def step(self, action):
action = np.array([action]).astype('float32')
obs, reward, done, info = self.env.step(action)
return self._process_obs(obs), reward, done, info
def reset(self):
obs = self.env.reset()
return self._process_obs(obs)
def wrapped_dmc2gym_env(cfg):
default_cfg = {
"frame_skip": 3,
"from_pixels": True,
"visualize_reward": False,
"height": 100,
"width": 100,
"channels_first": True,
}
default_cfg.update(cfg)
return DingEnvWrapper(
dmc2gym.make(
domain_name=default_cfg["domain_name"],
task_name=default_cfg["task_name"],
seed=1,
visualize_reward=default_cfg["visualize_reward"],
from_pixels=default_cfg["from_pixels"],
height=default_cfg["height"],
width=default_cfg["width"],
frame_skip=default_cfg["frame_skip"]
),
cfg={
'env_wrapper': [
lambda env: Dmc2GymWrapper(env, default_cfg),
lambda env: EvalEpisodeReturnWrapper(env),
]
}
)
def main(cfg, seed=0, max_env_step=int(1e10), max_train_iter=int(1e10)):
cfg = compile_config(
cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, save_cfg=True
)
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num
collector_env = BaseEnvManager(
env_fn=[partial(wrapped_dmc2gym_env, cfg=cartpole_balance_ppo_config.env) for _ in range(collector_env_num)],
cfg=cfg.env.manager
)
evaluator_env = BaseEnvManager(
env_fn=[partial(wrapped_dmc2gym_env, cfg=cartpole_balance_ppo_config.env) for _ in range(evaluator_env_num)],
cfg=cfg.env.manager
)
collector_env.seed(seed)
evaluator_env.seed(seed, dynamic_seed=False)
set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
model = VAC(**cfg.policy.model)
policy = PPOPolicy(cfg.policy, model=model)
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)
collector = SampleSerialCollector(
cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name
)
evaluator = InteractionSerialEvaluator(
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
)
while True:
if evaluator.should_eval(learner.train_iter):
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep)
if stop:
break
new_data = collector.collect(train_iter=learner.train_iter)
learner.train(new_data, collector.envstep)
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter:
break
if __name__ == '__main__':
main(cartpole_balance_ppo_config)