gomoku / DI-engine /dizoo /dmc2gym /envs /test_dmc2gym_env.py
zjowowen's picture
init space
079c32c
import pytest
import numpy as np
from easydict import EasyDict
from dizoo.dmc2gym.envs import DMC2GymEnv
from torch import float32
@pytest.mark.envtest
class TestDMC2GymEnv:
def test_naive(self):
env = DMC2GymEnv(EasyDict({
"domain_name": "cartpole",
"task_name": "balance",
"frame_skip": 2,
}))
env.seed(314, dynamic_seed=False)
assert env._seed == 314
obs = env.reset()
assert obs.shape == (
3,
100,
100,
)
for _ in range(5):
env.reset()
np.random.seed(314)
print('=' * 60)
for i in range(10):
# Both ``env.random_action()``, and utilizing ``np.random`` as well as action space,
# can generate legal random action.
if i < 5:
random_action = np.array(env.action_space.sample(), dtype=np.float32)
else:
random_action = env.random_action()
timestep = env.step(random_action)
print(timestep)
assert isinstance(timestep.obs, np.ndarray)
assert isinstance(timestep.done, bool)
assert timestep.obs.shape == (
3,
100,
100,
)
assert timestep.reward.shape == (1, )
assert timestep.reward >= env.reward_space.low
assert timestep.reward <= env.reward_space.high
print(env.observation_space, env.action_space, env.reward_space)
env.close()