gomoku / DI-engine /dizoo /gym_hybrid /envs /test_gym_hybrid_env.py
zjowowen's picture
init space
079c32c
import numpy as np
import pytest
from dizoo.gym_hybrid.envs import GymHybridEnv
from easydict import EasyDict
@pytest.mark.envtest
class TestGymHybridEnv:
def test_naive(self):
env = GymHybridEnv(
EasyDict(
{
'env_id': 'Moving-v0',
'act_scale': False,
'save_replay_gif': False,
'replay_path_gif': None,
'replay_path': None
}
)
)
env.enable_save_replay('./video')
env.seed(314, dynamic_seed=False)
assert env._seed == 314
obs = env.reset()
assert obs.shape == (10, )
for i in range(200):
random_action = env.random_action()
print('random_action', random_action)
timestep = env.step(random_action)
assert isinstance(timestep.obs, np.ndarray)
assert isinstance(timestep.done, bool)
assert timestep.obs.shape == (10, )
assert timestep.reward.shape == (1, )
assert timestep.info['action_args_mask'].shape == (3, 2)
if timestep.done:
print('reset env')
env.reset()
print(env.observation_space, env.action_space, env.reward_space)
env.close()