|
from easydict import EasyDict |
|
|
|
ant_td3_default_config = dict( |
|
exp_name='multi_mujoco_ant_2x4_td3', |
|
env=dict( |
|
scenario='Ant-v2', |
|
agent_conf="2x4d", |
|
agent_obsk=2, |
|
add_agent_id=False, |
|
episode_limit=1000, |
|
collector_env_num=8, |
|
evaluator_env_num=8, |
|
n_evaluator_episode=8, |
|
stop_value=6000, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
random_collect_size=0, |
|
multi_agent=True, |
|
model=dict( |
|
agent_obs_shape=54, |
|
global_obs_shape=111, |
|
action_shape=4, |
|
action_space='regression', |
|
actor_head_hidden_size=256, |
|
critic_head_hidden_size=256, |
|
twin_critic=True, |
|
), |
|
learn=dict( |
|
update_per_collect=10, |
|
batch_size=256, |
|
learning_rate_actor=1e-3, |
|
learning_rate_critic=1e-3, |
|
target_theta=0.005, |
|
discount_factor=0.99, |
|
actor_update_freq=2, |
|
noise=True, |
|
), |
|
collect=dict( |
|
n_sample=400, |
|
noise_sigma=0.1, |
|
), |
|
eval=dict(evaluator=dict(eval_freq=500, )), |
|
other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ), |
|
), |
|
) |
|
|
|
ant_td3_default_config = EasyDict(ant_td3_default_config) |
|
main_config = ant_td3_default_config |
|
|
|
ant_td3_default_create_config = dict( |
|
env=dict( |
|
type='mujoco_multi', |
|
import_names=['dizoo.multiagent_mujoco.envs.multi_mujoco_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict(type='td3'), |
|
replay_buffer=dict(type='naive', ), |
|
) |
|
ant_td3_default_create_config = EasyDict(ant_td3_default_create_config) |
|
create_config = ant_td3_default_create_config |
|
|
|
if __name__ == '__main__': |
|
|
|
from ding.entry.serial_entry import serial_pipeline |
|
serial_pipeline((main_config, create_config), seed=0, max_env_step=int(1e7)) |
|
|