from easydict import EasyDict # options={'memory_len/0', 'memory_len/9', 'memory_len/17', 'memory_len/20', 'memory_len/22', 'memory_size/0', 'bsuite_swingup/0', 'bandit_noise/0'} env_name = 'memory_len/9' if env_name in ['memory_len/0', 'memory_len/9', 'memory_len/17', 'memory_len/20', 'memory_len/22']: # the memory_length of above envs is 1, 10, 50, 80, 100, respectively. action_space_size = 2 observation_shape = 3 elif env_name in ['bsuite_swingup/0']: action_space_size = 3 observation_shape = 8 elif env_name == 'bandit_noise/0': action_space_size = 11 observation_shape = 1 elif env_name in ['memory_size/0']: action_space_size = 2 observation_shape = 3 else: raise NotImplementedError # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== seed = 0 collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 num_simulations = 50 update_per_collect = 100 batch_size = 256 max_env_step = int(5e5) reanalyze_ratio = 0 # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== bsuite_muzero_config = dict( exp_name=f'data_mz_ctree/bsuite_{env_name}_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed{seed}', env=dict( env_name=env_name, stop_value=int(1e6), continuous=False, manually_discretization=False, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=observation_shape, action_space_size=action_space_size, model_type='mlp', lstm_hidden_size=128, latent_state_dim=128, self_supervised_learning_loss=True, # NOTE: default is False. discrete_action_encoding_type='one_hot', norm_type='BN', ), cuda=True, env_type='not_board_games', game_segment_length=50, update_per_collect=update_per_collect, batch_size=batch_size, optim_type='Adam', lr_piecewise_constant_decay=False, learning_rate=0.003, ssl_loss_weight=2, # NOTE: default is 0. num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, n_episode=n_episode, eval_freq=int(2e2), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) bsuite_muzero_config = EasyDict(bsuite_muzero_config) main_config = bsuite_muzero_config bsuite_muzero_create_config = dict( env=dict( type='bsuite_lightzero', import_names=['zoo.bsuite.envs.bsuite_lightzero_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='muzero', import_names=['lzero.policy.muzero'], ), collector=dict( type='episode_muzero', import_names=['lzero.worker.muzero_collector'], ) ) bsuite_muzero_create_config = EasyDict(bsuite_muzero_create_config) create_config = bsuite_muzero_create_config if __name__ == "__main__": from lzero.entry import train_muzero train_muzero([main_config, create_config], seed=seed, max_env_step=max_env_step)