from easydict import EasyDict # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== env_name = 'game_2048' action_space_size = 4 use_ture_chance_label_in_chance_encoder = True collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 num_simulations = 100 update_per_collect = 200 batch_size = 512 max_env_step = int(1e9) reanalyze_ratio = 0. num_of_possible_chance_tile = 2 chance_space_size = 16 * num_of_possible_chance_tile # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== game_2048_stochastic_muzero_config = dict( exp_name=f'data_stochastic_mz_ctree/game_2048_npct-{num_of_possible_chance_tile}_stochastic_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_bs{batch_size}_chance-{use_ture_chance_label_in_chance_encoder}_sslw2_seed0', env=dict( stop_value=int(1e6), env_name=env_name, obs_shape=(16, 4, 4), obs_type='dict_encoded_board', num_of_possible_chance_tile=num_of_possible_chance_tile, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=(16, 4, 4), action_space_size=action_space_size, chance_space_size=chance_space_size, image_channel=16, # NOTE: whether to use the self_supervised_learning_loss. default is False self_supervised_learning_loss=True, discrete_action_encoding_type='one_hot', norm_type='BN', ), use_ture_chance_label_in_chance_encoder=use_ture_chance_label_in_chance_encoder, mcts_ctree=True, cuda=True, game_segment_length=200, update_per_collect=update_per_collect, batch_size=batch_size, td_steps=10, discount_factor=0.999, manual_temperature_decay=True, optim_type='Adam', lr_piecewise_constant_decay=False, learning_rate=0.003, weight_decay=1e-4, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, ssl_loss_weight=2, # default is 0 n_episode=n_episode, eval_freq=int(2e3), replay_buffer_size=int(1e6), collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) game_2048_stochastic_muzero_config = EasyDict(game_2048_stochastic_muzero_config) main_config = game_2048_stochastic_muzero_config game_2048_stochastic_muzero_create_config = dict( env=dict( type='game_2048', import_names=['zoo.game_2048.envs.game_2048_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='stochastic_muzero', import_names=['lzero.policy.stochastic_muzero'], ), ) game_2048_stochastic_muzero_create_config = EasyDict(game_2048_stochastic_muzero_create_config) create_config = game_2048_stochastic_muzero_create_config if __name__ == "__main__": from lzero.entry import train_muzero train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)