from easydict import EasyDict # options={'Hopper-v3', 'HalfCheetah-v3', 'Walker2d-v3', 'Ant-v3', 'Humanoid-v3'} env_name = 'Hopper-v3' if env_name == 'Hopper-v3': action_space_size = 3 observation_shape = 11 elif env_name in ['HalfCheetah-v3', 'Walker2d-v3']: action_space_size = 6 observation_shape = 17 elif env_name == 'Ant-v3': action_space_size = 8 observation_shape = 111 elif env_name == 'Humanoid-v3': action_space_size = 17 observation_shape = 376 ignore_done = False if env_name == 'HalfCheetah-v3': # for halfcheetah, we ignore done signal to predict the Q value of the last step correctly. ignore_done = True # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 continuous_action_space = False K = 20 # num_of_sampled_actions num_simulations = 50 update_per_collect = 200 batch_size = 256 max_env_step = int(3e6) reanalyze_ratio = 0. each_dim_disc_size = 5 policy_entropy_loss_weight = 0.005 # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== mujoco_disc_sampled_efficientzero_config = dict( exp_name= f'data_sez_ctree/{env_name[:-3]}_bin-{each_dim_disc_size}_sampled_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_pelw{policy_entropy_loss_weight}_seed0', env=dict( env_name=env_name, action_clip=True, continuous=False, manually_discretization=False, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), each_dim_disc_size=each_dim_disc_size, ), policy=dict( model=dict( observation_shape=observation_shape, action_space_size=int(each_dim_disc_size ** action_space_size), continuous_action_space=continuous_action_space, num_of_sampled_actions=K, model_type='mlp', lstm_hidden_size=256, latent_state_dim=256, self_supervised_learning_loss=True, res_connection_in_dynamics=True, ), cuda=True, policy_entropy_loss_weight=policy_entropy_loss_weight, ignore_done=ignore_done, env_type='not_board_games', game_segment_length=200, update_per_collect=update_per_collect, batch_size=batch_size, discount_factor=0.99, optim_type='AdamW', lr_piecewise_constant_decay=False, learning_rate=0.003, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, n_episode=n_episode, eval_freq=int(2e3), replay_buffer_size=int(1e6), collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) mujoco_disc_sampled_efficientzero_config = EasyDict(mujoco_disc_sampled_efficientzero_config) main_config = mujoco_disc_sampled_efficientzero_config mujoco_disc_sampled_efficientzero_create_config = dict( env=dict( type='mujoco_disc_lightzero', import_names=['zoo.mujoco.envs.mujoco_disc_lightzero_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='sampled_efficientzero', import_names=['lzero.policy.sampled_efficientzero'], ), ) mujoco_disc_sampled_efficientzero_create_config = EasyDict(mujoco_disc_sampled_efficientzero_create_config) create_config = mujoco_disc_sampled_efficientzero_create_config if __name__ == "__main__": from lzero.entry import train_muzero train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step)