from easydict import EasyDict import ding.envs.gym_env cfg = dict( exp_name='Bipedalwalker-v3-TD3', seed=0, env=dict( env_id='BipedalWalker-v3', collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, act_scale=True, rew_clip=True, ), policy=dict( cuda=True, random_collect_size=10000, model=dict( obs_shape=24, action_shape=4, twin_critic=True, action_space='regression', actor_head_hidden_size=400, critic_head_hidden_size=400, ), learn=dict( update_per_collect=64, batch_size=256, learning_rate_actor=0.0003, learning_rate_critic=0.0003, target_theta=0.005, discount_factor=0.99, actor_update_freq=2, noise=True, noise_sigma=0.2, noise_range=dict( min=-0.5, max=0.5, ), learner=dict(hook=dict(log_show_after_iter=1000, )) ), collect=dict(n_sample=64, ), other=dict(replay_buffer=dict(replay_buffer_size=300000, ), ), ), wandb_logger=dict( gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False ), ) cfg = EasyDict(cfg) env = ding.envs.gym_env.env