import time import torch from hpc_rll.origin.td import q_nstep_td_error_with_rescale, q_nstep_td_data from hpc_rll.rl_utils.td import QNStepTDRescale from testbase import mean_relative_error, times assert torch.cuda.is_available() use_cuda = True T = 1024 B = 64 N = 64 gamma = 0.95 def qntd_rescale_val(): ori_q = torch.randn(B, N) ori_next_n_q = torch.randn(B, N) ori_action = torch.randint(0, N, size=(B, )) ori_next_n_action = torch.randint(0, N, size=(B, )) ori_reward = torch.randn(T, B) ori_done = torch.randn(B) ori_weight = torch.randn(B) hpc_q = ori_q.clone().detach() hpc_next_n_q = ori_next_n_q.clone().detach() hpc_action = ori_action.clone().detach() hpc_next_n_action = ori_next_n_action.clone().detach() hpc_reward = ori_reward.clone().detach() hpc_done = ori_done.clone().detach() hpc_weight = ori_weight.clone().detach() hpc_qntd_rescale = QNStepTDRescale(T, B, N) if use_cuda: ori_q = ori_q.cuda() ori_next_n_q = ori_next_n_q.cuda() ori_action = ori_action.cuda() ori_next_n_action = ori_next_n_action.cuda() ori_reward = ori_reward.cuda() ori_done = ori_done.cuda() ori_weight = ori_weight.cuda() hpc_q = hpc_q.cuda() hpc_next_n_q = hpc_next_n_q.cuda() hpc_action = hpc_action.cuda() hpc_next_n_action = hpc_next_n_action.cuda() hpc_reward = hpc_reward.cuda() hpc_done = hpc_done.cuda() hpc_weight = hpc_weight.cuda() hpc_qntd_rescale = hpc_qntd_rescale.cuda() ori_q.requires_grad_(True) ori_loss, _ = q_nstep_td_error_with_rescale( q_nstep_td_data(ori_q, ori_next_n_q, ori_action, ori_next_n_action, ori_reward, ori_done, ori_weight), gamma, T ) ori_loss = ori_loss.mean() ori_loss.backward() if use_cuda: torch.cuda.synchronize() hpc_q.requires_grad_(True) hpc_loss, _ = hpc_qntd_rescale( hpc_q, hpc_next_n_q, hpc_action, hpc_next_n_action, hpc_reward, hpc_done, hpc_weight, gamma ) hpc_loss = hpc_loss.mean() hpc_loss.backward() if use_cuda: torch.cuda.synchronize() mre = mean_relative_error( torch.flatten(ori_loss).cpu().detach().numpy(), torch.flatten(hpc_loss).cpu().detach().numpy() ) print("qntd rescale fp mean_relative_error: " + str(mre)) mre = mean_relative_error( torch.flatten(ori_q.grad).cpu().detach().numpy(), torch.flatten(hpc_q.grad).cpu().detach().numpy() ) print("qntd rescale bp mean_relative_error: " + str(mre)) def qntd_rescale_perf(): ori_q = torch.randn(B, N) ori_next_n_q = torch.randn(B, N) ori_action = torch.randint(0, N, size=(B, )) ori_next_n_action = torch.randint(0, N, size=(B, )) ori_reward = torch.randn(T, B) ori_done = torch.randn(B) ori_weight = torch.randn(B) hpc_q = ori_q.clone().detach() hpc_next_n_q = ori_next_n_q.clone().detach() hpc_action = ori_action.clone().detach() hpc_next_n_action = ori_next_n_action.clone().detach() hpc_reward = ori_reward.clone().detach() hpc_done = ori_done.clone().detach() hpc_weight = ori_weight.clone().detach() hpc_qntd_rescale = QNStepTDRescale(T, B, N) if use_cuda: ori_q = ori_q.cuda() ori_next_n_q = ori_next_n_q.cuda() ori_action = ori_action.cuda() ori_next_n_action = ori_next_n_action.cuda() ori_reward = ori_reward.cuda() ori_done = ori_done.cuda() ori_weight = ori_weight.cuda() hpc_q = hpc_q.cuda() hpc_next_n_q = hpc_next_n_q.cuda() hpc_action = hpc_action.cuda() hpc_next_n_action = hpc_next_n_action.cuda() hpc_reward = hpc_reward.cuda() hpc_done = hpc_done.cuda() hpc_weight = hpc_weight.cuda() hpc_qntd_rescale = hpc_qntd_rescale.cuda() ori_q.requires_grad_(True) for i in range(times): t = time.time() ori_loss, _ = q_nstep_td_error_with_rescale( q_nstep_td_data(ori_q, ori_next_n_q, ori_action, ori_next_n_action, ori_reward, ori_done, ori_weight), gamma, T ) ori_loss = ori_loss.mean() ori_loss.backward() if use_cuda: torch.cuda.synchronize() print('epoch: {}, original qntd rescale cost time: {}'.format(i, time.time() - t)) hpc_q.requires_grad_(True) for i in range(times): t = time.time() hpc_loss, _ = hpc_qntd_rescale( hpc_q, hpc_next_n_q, hpc_action, hpc_next_n_action, hpc_reward, hpc_done, hpc_weight, gamma ) hpc_loss = hpc_loss.mean() hpc_loss.backward() if use_cuda: torch.cuda.synchronize() print('epoch: {}, hpc qntd rescale cost time: {}'.format(i, time.time() - t)) if __name__ == '__main__': print("target problem: T = {}, B = {}, N = {}, gamma = {}".format(T, B, N, gamma)) print("================run qntd rescale validation test================") qntd_rescale_val() print("================run qntd rescale performance test================") qntd_rescale_perf()