import torch from easydict import EasyDict from lzero.policy.scaling_transform import inverse_scalar_transform class MuZeroModelFake(torch.nn.Module): """ Overview: Fake MuZero model just for test EfficientZeroMCTSPtree. Interfaces: __init__, initial_inference, recurrent_inference """ def __init__(self, action_num): super().__init__() self.action_num = action_num def initial_inference(self, observation): encoded_state = observation batch_size = encoded_state.shape[0] value = torch.zeros(size=(batch_size, 601)) value_prefix = [0. for _ in range(batch_size)] policy_logits = torch.zeros(size=(batch_size, self.action_num)) latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) output = { 'searched_value': value, 'value_prefix': value_prefix, 'policy_logits': policy_logits, 'latent_state': latent_state, 'reward_hidden_state': reward_hidden_state_state } return EasyDict(output) def recurrent_inference(self, hidden_states, reward_hidden_states, actions): batch_size = hidden_states.shape[0] latent_state = torch.zeros(size=(batch_size, 12, 3, 3)) reward_hidden_state_state = (torch.zeros(size=(1, batch_size, 16)), torch.zeros(size=(1, batch_size, 16))) value = torch.zeros(size=(batch_size, 601)) value_prefix = torch.zeros(size=(batch_size, 601)) policy_logits = torch.zeros(size=(batch_size, self.action_num)) output = { 'searched_value': value, 'value_prefix': value_prefix, 'policy_logits': policy_logits, 'latent_state': latent_state, 'reward_hidden_state': reward_hidden_state_state } return EasyDict(output) def check_mcts(): import numpy as np from lzero.mcts.tree_search.mcts_ptree import EfficientZeroMCTSPtree as MCTSPtree policy_config = EasyDict( dict( lstm_horizon_len=5, num_simulations=8, batch_size=16, pb_c_base=1, pb_c_init=1, discount_factor=0.9, root_dirichlet_alpha=0.3, root_noise_weight=0.2, dirichlet_alpha=0.3, exploration_fraction=1, device='cpu', value_delta_max=0.01, model=dict( action_space_size=9, categorical_distribution=True, support_scale=300, ), ) ) env_nums = policy_config.batch_size model = MuZeroModelFake(action_num=100) stack_obs = torch.zeros( size=( policy_config.batch_size, 100, ), dtype=torch.float ) network_output = model.initial_inference(stack_obs.float()) latent_state_roots = network_output['latent_state'] reward_hidden_state_state = network_output['reward_hidden_state'] pred_values_pool = network_output['value'] value_prefix_pool = network_output['value_prefix'] policy_logits_pool = network_output['policy_logits'] # network output process pred_values_pool = inverse_scalar_transform(pred_values_pool, policy_config.model.support_scale).detach().cpu().numpy() latent_state_roots = latent_state_roots.detach().cpu().numpy() reward_hidden_state_state = ( reward_hidden_state_state[0].detach().cpu().numpy(), reward_hidden_state_state[1].detach().cpu().numpy() ) policy_logits_pool = policy_logits_pool.detach().cpu().numpy().tolist() legal_actions_list = [ [i for i in range(policy_config.model.action_space_size)] for _ in range(env_nums) ] # all action roots = MCTSPtree.roots(env_nums, legal_actions_list) noises = [ np.random.dirichlet([policy_config.root_dirichlet_alpha] * policy_config.model.action_space_size ).astype(np.float32).tolist() for _ in range(env_nums) ] roots.prepare(policy_config.root_noise_weight, noises, value_prefix_pool, policy_logits_pool) MCTSPtree(policy_config).search(roots, model, latent_state_roots, reward_hidden_state_state) roots_distributions = roots.get_distributions() assert np.array(roots_distributions).shape == (policy_config.batch_size, policy_config.model.action_space_size) if __name__ == '__main__': import cProfile run_num = 10 def profile_mcts(run_num): for i in range(run_num): check_mcts() # Save the analysis results to a file. cProfile.run(f"profile_mcts({run_num})", filename="result.out")