from easydict import EasyDict import ding.envs.gym_env cfg = dict( exp_name='Pendulum-v1-SAC', seed=0, env=dict( env_id='Pendulum-v1', collector_env_num=10, evaluator_env_num=8, n_evaluator_episode=8, stop_value=-250, act_scale=True, ), policy=dict( cuda=True, priority=False, random_collect_size=1000, model=dict( obs_shape=3, action_shape=1, twin_critic=True, action_space='reparameterization', actor_head_hidden_size=128, critic_head_hidden_size=128, ), learn=dict( update_per_collect=1, batch_size=128, learning_rate_q=0.001, learning_rate_policy=0.001, learning_rate_alpha=0.0003, ignore_done=True, target_theta=0.005, discount_factor=0.99, auto_alpha=True, ), collect=dict(n_sample=10, ), eval=dict(evaluator=dict(eval_freq=100, )), other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ), ), wandb_logger=dict( gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False ), ) cfg = EasyDict(cfg) env = ding.envs.gym_env.env