from easydict import EasyDict import ding.envs.gym_env cfg = dict( exp_name='Walker2d-v3-TD3', seed=0, env=dict( env_id='Walker2d-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, env_wrapper='mujoco_default', ), policy=dict( cuda=True, random_collect_size=25000, model=dict( obs_shape=17, action_shape=6, twin_critic=True, actor_head_hidden_size=256, critic_head_hidden_size=256, action_space='regression', ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_actor=1e-3, learning_rate_critic=1e-3, ignore_done=False, target_theta=0.005, discount_factor=0.99, actor_update_freq=2, noise=True, noise_sigma=0.2, noise_range=dict( min=-0.5, max=0.5, ), ), collect=dict( n_sample=1, unroll_len=1, noise_sigma=0.1, ), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ), wandb_logger=dict( gradient_logger=True, video_logger=True, plot_logger=True, action_logger=True, return_logger=False ), ) cfg = EasyDict(cfg) env = ding.envs.gym_env.env