from typing import Union, Optional, Tuple import os import torch from functools import partial from tensorboardX import SummaryWriter from copy import deepcopy from torch.utils.data import DataLoader from ding.envs import get_vec_env_setting, create_env_manager from ding.worker import BaseLearner, InteractionSerialEvaluator from ding.config import read_config, compile_config from ding.policy import create_policy from ding.utils import set_pkg_seed from ding.utils.data import NaiveRLDataset def serial_pipeline_bc( input_cfg: Union[str, Tuple[dict, dict]], seed: int, data_path: str, model: Optional[torch.nn.Module] = None, max_iter=int(1e6), ) -> Union['Policy', bool]: # noqa r""" Overview: Serial pipeline entry of imitation learning. Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - data_path (:obj:`str`): Path of training data. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. Returns: - policy (:obj:`Policy`): Converged policy. - convergence (:obj:`bool`): whether il training is converged """ cont = input_cfg[0].policy.continuous if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) cfg = compile_config(cfg, seed=seed, auto=True, create_cfg=create_cfg) # Env, Policy env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env) evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) # Random seed evaluator_env.seed(cfg.seed, dynamic_seed=False) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'eval']) # Main components tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) dataset = NaiveRLDataset(data_path) dataloader = DataLoader(dataset[:-len(dataset) // 10], cfg.policy.learn.batch_size, collate_fn=lambda x: x) eval_loader = DataLoader( dataset[-len(dataset) // 10:], cfg.policy.learn.batch_size, ) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) # ========== # Main loop # ========== learner.call_hook('before_run') stop = False iter_cnt = 0 for epoch in range(cfg.policy.learn.train_epoch): # Evaluate policy performance loss_list = [] for _, bat in enumerate(eval_loader): res = policy._forward_eval(bat['obs']) if cont: loss_list.append(torch.nn.L1Loss()(res['action'], bat['action'].squeeze(-1)).item()) else: res = torch.argmax(res['logit'], dim=1) loss_list.append(torch.sum(res == bat['action'].squeeze(-1)).item() / bat['action'].shape[0]) if cont: label = 'validation_loss' else: label = 'validation_acc' tb_logger.add_scalar(label, sum(loss_list) / len(loss_list), iter_cnt) for i, train_data in enumerate(dataloader): if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter) if stop: break learner.train(train_data) iter_cnt += 1 if iter_cnt >= max_iter: stop = True break if stop: break learner.call_hook('after_run') print('final reward is: {}'.format(reward)) return policy, stop