import gym from ditk import logging import torch from ding.model import ContinuousQAC from ding.policy import SACPolicy from ding.envs import DingEnvWrapper, BaseEnvManagerV2 from ding.data import offline_data_save_type from ding.config import compile_config from ding.framework import task from ding.framework.context import OnlineRLContext from ding.framework.middleware import StepCollector, offline_data_saver from ding.utils import set_pkg_seed from dizoo.classic_control.pendulum.envs.pendulum_env import PendulumEnv from dizoo.classic_control.pendulum.config.pendulum_sac_data_generation_config import main_config, create_config def main(): logging.getLogger().setLevel(logging.INFO) cfg = compile_config(main_config, create_cfg=create_config, auto=True, evaluator=None) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env = BaseEnvManagerV2(env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(10)], cfg=cfg.env.manager) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = ContinuousQAC(**cfg.policy.model) policy = SACPolicy(cfg.policy, model=model, enable_field=['collect']) state_dict = torch.load(cfg.policy.collect.state_dict_path, map_location='cpu') policy.collect_mode.load_state_dict(state_dict) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(offline_data_saver(cfg.policy.collect.save_path, data_type='hdf5')) task.run(max_step=1) if __name__ == "__main__": main()