import torch import pytest from itertools import product from ding.world_model.idm import InverseDynamicsModel from ding.torch_utils import is_differentiable from ding.utils import squeeze B = 4 obs_shape_arg = [4, (8, ), (9, 64, 64)] encoder_hidden_size_list = [10, 20, 10] action_shape_arg = [6, (6, ), [6]] args = list(product(*[obs_shape_arg, action_shape_arg, ['regression', 'reparameterization']])) @pytest.mark.unittest class TestContinousIDM: @pytest.mark.parametrize('obs_shape, action_shape, action_space', args) def test_continuous_idm(self, obs_shape, action_shape, action_space): model = InverseDynamicsModel( obs_shape=obs_shape, action_shape=action_shape, encoder_hidden_size_list=encoder_hidden_size_list, action_space=action_space, ) inputs = {} if isinstance(obs_shape, int): inputs['obs'] = torch.randn(B, obs_shape * 2) else: inputs['obs'] = torch.randn(B, *(obs_shape[0] * 2, *obs_shape[1:])) if isinstance(action_shape, int): inputs['action'] = torch.randn(B, action_shape) else: inputs['action'] = torch.randn(B, *action_shape) if action_space == 'regression': action = model.predict_action(inputs['obs'])['action'] if isinstance(action_shape, int): assert action.shape == (B, action_shape) else: assert action.shape == (B, *action_shape) assert action.eq(action.clamp(-1, 1)).all() elif action_space == 'reparameterization': (mu, sigma) = model.predict_action(inputs['obs'])['logit'] action = model.predict_action(inputs['obs'])['action'] if isinstance(action_shape, int): assert mu.shape == (B, action_shape) assert sigma.shape == (B, action_shape) assert action.shape == (B, action_shape) else: assert mu.shape == (B, *action_shape) assert sigma.shape == (B, *action_shape) assert action.shape == (B, *action_shape) loss = model.train(inputs, n_epoch=10, learning_rate=0.01, weight_decay=1e-4) assert isinstance(loss, float) B = 4 obs_shape = [4, (8, ), (4, 64, 64)] action_shape = [6, (6, ), [6]] encoder_hidden_size_list = [10, 20, 10] args = list(product(*[obs_shape, action_shape])) action_space = 'discrete' @pytest.mark.unittest class TestDiscreteIDM: @pytest.mark.parametrize('obs_shape, action_shape', args) def test_discrete_idm(self, obs_shape, action_shape): model = InverseDynamicsModel( obs_shape=obs_shape, action_shape=action_shape, encoder_hidden_size_list=encoder_hidden_size_list, action_space=action_space, ) inputs = {} if isinstance(obs_shape, int): inputs['obs'] = torch.randn(B, obs_shape * 2) else: obs_shape = (obs_shape[0] * 2, *obs_shape[1:]) inputs['obs'] = torch.randn(B, *obs_shape) # inputs['action'] = torch.randint(action_shape, B) if isinstance(action_shape, int): inputs['action'] = torch.randint(action_shape, (B, )) else: inputs['action'] = torch.randint(action_shape[0], (B, )) outputs = model.forward(inputs['obs']) assert isinstance(outputs, dict) if isinstance(action_shape, int): assert outputs['logit'].shape == (B, action_shape) else: assert outputs['logit'].shape == (B, *action_shape) # self.test_train(model, inputs) action = model.predict_action(inputs['obs'])['action'] assert action.shape == (B, ) loss = model.train(inputs, n_epoch=10, learning_rate=0.01, weight_decay=1e-4) assert isinstance(loss, float)