from easydict import EasyDict # options={'PongNoFrameskip-v4', 'QbertNoFrameskip-v4', 'MsPacmanNoFrameskip-v4', 'SpaceInvadersNoFrameskip-v4', 'BreakoutNoFrameskip-v4', ...} env_name = 'PongNoFrameskip-v4' if env_name == 'PongNoFrameskip-v4': action_space_size = 6 elif env_name == 'QbertNoFrameskip-v4': action_space_size = 6 elif env_name == 'MsPacmanNoFrameskip-v4': action_space_size = 9 elif env_name == 'SpaceInvadersNoFrameskip-v4': action_space_size = 6 elif env_name == 'BreakoutNoFrameskip-v4': action_space_size = 4 # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== gpu_num = 2 collector_env_num = 8 n_episode = int(8*gpu_num) evaluator_env_num = 3 num_simulations = 50 update_per_collect = 1000 batch_size = 256 max_env_step = int(1e6) reanalyze_ratio = 0. eps_greedy_exploration_in_collect = False # the following is debug config # collector_env_num = 2 # n_episode = int(2*2) # evaluator_env_num = 1 # num_simulations = 2 # update_per_collect = 2 # batch_size = 4 # max_env_step = int(1e6) # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== atari_efficientzero_config = dict( exp_name= f'data_ez_ctree/{env_name[:-14]}_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_ddp_{gpu_num}gpu_seed0', env=dict( env_name=env_name, obs_shape=(4, 96, 96), collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=(4, 96, 96), frame_stack_num=4, action_space_size=action_space_size, downsample=True, discrete_action_encoding_type='one_hot', norm_type='BN', ), multi_gpu=True, cuda=True, env_type='not_board_games', game_segment_length=400, random_collect_episode_num=0, eps=dict( eps_greedy_exploration_in_collect=eps_greedy_exploration_in_collect, # need to dynamically adjust the number of decay steps according to the characteristics of the environment and the algorithm type='linear', start=1., end=0.05, decay=int(1e5), ), use_augmentation=True, update_per_collect=update_per_collect, batch_size=batch_size, optim_type='SGD', lr_piecewise_constant_decay=True, learning_rate=0.2, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, n_episode=n_episode, eval_freq=int(2e3), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) atari_efficientzero_config = EasyDict(atari_efficientzero_config) main_config = atari_efficientzero_config atari_efficientzero_create_config = dict( env=dict( type='atari_lightzero', import_names=['zoo.atari.envs.atari_lightzero_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='efficientzero', import_names=['lzero.policy.efficientzero'], ), collector=dict( type='episode_muzero', import_names=['lzero.worker.muzero_collector'], ) ) atari_efficientzero_create_config = EasyDict(atari_efficientzero_create_config) create_config = atari_efficientzero_create_config if __name__ == "__main__": """ Overview: This script should be executed with GPUs. Run the following command to launch the script: python -m torch.distributed.launch --nproc_per_node=2 ./LightZero/zoo/atari/config/atari_efficientzero_multigpu_ddp_config.py """ from ding.utils import DDPContext from lzero.entry import train_muzero from lzero.config.utils import lz_to_ddp_config seed_list = [0, 1, 2] # list of seeds you want to use for training for seed in seed_list: with DDPContext(): # Each iteration uses a different seed for training # Change exp_name according to current seed main_config.exp_name = f'data_ez_ctree/{env_name[:-14]}_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_ddp_{gpu_num}gpu_seed{seed}' main_config = lz_to_ddp_config(main_config) train_muzero([main_config, create_config], seed=seed, max_env_step=max_env_step)