from easydict import EasyDict # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 num_simulations = 50 update_per_collect = 200 batch_size = 256 max_env_step = int(5e6) reanalyze_ratio = 0. # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== lunarlander_muzero_config = dict( exp_name=f'data_mz_ctree/lunarlander_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed0', env=dict( env_name='LunarLander-v2', continuous=False, manually_discretization=False, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=8, action_space_size=4, model_type='mlp', lstm_hidden_size=256, latent_state_dim=256, self_supervised_learning_loss=True, # NOTE: default is False. discrete_action_encoding_type='one_hot', res_connection_in_dynamics=True, norm_type='BN', ), cuda=True, env_type='not_board_games', game_segment_length=200, update_per_collect=update_per_collect, batch_size=batch_size, optim_type='Adam', lr_piecewise_constant_decay=False, learning_rate=0.003, ssl_loss_weight=2, # NOTE: default is 0. grad_clip_value=0.5, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, n_episode=n_episode, eval_freq=int(1e3), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) lunarlander_muzero_config = EasyDict(lunarlander_muzero_config) main_config = lunarlander_muzero_config lunarlander_muzero_create_config = dict( env=dict( type='lunarlander', import_names=['zoo.box2d.lunarlander.envs.lunarlander_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='muzero', import_names=['lzero.policy.muzero'], ), collector=dict( type='episode_muzero', get_train_sample=True, import_names=['lzero.worker.muzero_collector'], ) ) lunarlander_muzero_create_config = EasyDict(lunarlander_muzero_create_config) create_config = lunarlander_muzero_create_config if __name__ == "__main__": # Users can use different train entry by specifying the entry_type. entry_type = "train_muzero" # options={"train_muzero", "train_muzero_with_gym_env"} if entry_type == "train_muzero": from lzero.entry import train_muzero train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) elif entry_type == "train_muzero_with_gym_env": """ The ``train_muzero_with_gym_env`` entry means that the environment used in the training process is generated by wrapping the original gym environment with LightZeroEnvWrapper. Users can refer to lzero/envs/wrappers for more details. """ from lzero.entry import train_muzero_with_gym_env train_muzero_with_gym_env([main_config, create_config], seed=0, max_env_step=max_env_step)