import os from itertools import product from typing import Union import gymnasium as gym import numpy as np from ding.envs import BaseEnvTimestep from ding.envs.common import save_frames_as_gif from ding.torch_utils import to_ndarray from ding.utils import ENV_REGISTRY from dizoo.mujoco.envs.mujoco_disc_env import MujocoDiscEnv @ENV_REGISTRY.register('mujoco_disc_lightzero') class MujocoDiscEnvLZ(MujocoDiscEnv): """ Overview: The modified Mujoco environment with manually discretized action space for LightZero's algorithms. For each dimension, equally dividing the original continuous action into ``each_dim_disc_size`` bins and using their Cartesian product to obtain handcrafted discrete actions. """ config = dict( action_clip=False, delay_reward_step=0, replay_path=None, save_replay_gif=False, replay_path_gif=None, action_bins_per_branch=None, norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), ) def __init__(self, cfg: dict) -> None: """ Overview: Initialize the MuJoCo environment with the given config dictionary. Arguments: - cfg (:obj:`dict`): Configuration dictionary. """ super().__init__(cfg) self._cfg = cfg # We use env_name to indicate the env_id in LightZero. self._cfg.env_id = self._cfg.env_name self._action_clip = cfg.action_clip self._delay_reward_step = cfg.delay_reward_step self._init_flag = False self._replay_path = None self._replay_path_gif = cfg.replay_path_gif self._save_replay_gif = cfg.save_replay_gif def reset(self) -> np.ndarray: """ Overview: Reset the environment. During the reset phase, the original environment will be created, and at the same time, the action space will be discretized into "each_dim_disc_size" bins. Returns: - info_dict (:obj:`Dict[str, Any]`): Including observation, action_mask, and to_play label. """ if not self._init_flag: self._env = self._make_env() self._env.observation_space.dtype = np.float32 self._observation_space = self._env.observation_space self._raw_action_space = self._env.action_space self._reward_space = gym.spaces.Box( low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32 ) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) if self._replay_path is not None: self._env = gym.wrappers.RecordVideo( self._env, video_folder=self._replay_path, episode_trigger=lambda episode_id: True, name_prefix='rl-video-{}'.format(id(self)) ) if self._save_replay_gif: self._frames = [] obs = self._env.reset() obs = to_ndarray(obs).astype('float32') # disc_to_cont: transform discrete action index to original continuous action self.m = self._raw_action_space.shape[0] self.n = self._cfg.each_dim_disc_size self.K = self.n ** self.m self.disc_to_cont = list(product(*[list(range(self.n)) for _ in range(self.m)])) self._eval_episode_return = 0. # the modified discrete action space self._action_space = gym.spaces.Discrete(self.K) action_mask = np.ones(self.K, 'int8') obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} return obs def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: """ Overview: Take an action in the environment. During the step phase, the environment first converts the discrete action into a continuous action, and then passes it into the original environment. Arguments: - action (:obj:`Union[np.ndarray, list]`): Discrete action to be taken in the environment. Returns: - BaseEnvTimestep (:obj:`BaseEnvTimestep`): A tuple containing observation, reward, done, and info. """ # disc_to_cont: transform discrete action index to original continuous action action = [-1 + 2 / self.n * k for k in self.disc_to_cont[int(action)]] action = to_ndarray(action) if self._save_replay_gif: self._frames.append(self._env.render(mode='rgb_array')) if self._action_clip: action = np.clip(action, -1, 1) obs, rew, done, info = self._env.step(action) self._eval_episode_return += rew if done: if self._save_replay_gif: path = os.path.join( self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count) ) save_frames_as_gif(self._frames, path) self._save_replay_count += 1 info['eval_episode_return'] = self._eval_episode_return obs = to_ndarray(obs).astype(np.float32) rew = to_ndarray([rew]).astype(np.float32) action_mask = np.ones(self._action_space.n, 'int8') obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1} return BaseEnvTimestep(obs, rew, done, info) def __repr__(self) -> str: """ Overview: Represent the environment instance as a string. Returns: - repr_str (:obj:`str`): Representation string of the environment instance. """ return "LightZero modified Mujoco Env({}) with manually discretized action space".format(self._cfg.env_name)