from easydict import EasyDict obs_shape = 24 act_shape = 4 bipedalwalker_sac_gail_default_config = dict( exp_name='bipedalwalker_sac_gail_seed0', env=dict( collector_env_num=8, evaluator_env_num=5, # (bool) Scale output action into legal range. act_scale=True, n_evaluator_episode=5, stop_value=300, rew_clip=True, # The path to save the game replay replay_path=None, ), reward_model=dict( type='gail', input_size=obs_shape + act_shape, hidden_size=64, batch_size=64, learning_rate=1e-3, update_per_collect=100, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='data_path_placeholder+/reward_model/ckpt/ckpt_best.pth.tar', # Users should add their own data path here. Data path should lead to a file to store data or load the stored data. # Absolute path is recommended. # In DI-engine, it is usually located in ``exp_name`` directory data_path='data_path_placeholder', collect_count=100000, ), policy=dict( cuda=False, priority=False, random_collect_size=1000, model=dict( obs_shape=obs_shape, action_shape=act_shape, twin_critic=True, action_space='reparameterization', actor_head_hidden_size=128, critic_head_hidden_size=128, ), learn=dict( update_per_collect=1, batch_size=128, learning_rate_q=0.001, learning_rate_policy=0.001, learning_rate_alpha=0.0003, ignore_done=True, target_theta=0.005, discount_factor=0.99, auto_alpha=True, value_network=False, ), collect=dict( n_sample=128, unroll_len=1, ), other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ), ), ) bipedalwalker_sac_gail_default_config = EasyDict(bipedalwalker_sac_gail_default_config) main_config = bipedalwalker_sac_gail_default_config bipedalwalker_sac_gail_create_config = dict( env=dict( type='bipedalwalker', import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='sac', import_names=['ding.policy.sac'], ), replay_buffer=dict(type='naive', ), ) bipedalwalker_sac_gail_create_config = EasyDict(bipedalwalker_sac_gail_create_config) create_config = bipedalwalker_sac_gail_create_config if __name__ == "__main__": # or you can enter `ding -m serial_gail -c bipedalwalker_sac_gail_config.py -s 0` # then input the config you used to generate your expert model in the path mentioned above # e.g. bipedalwalker_sac_config.py from ding.entry import serial_pipeline_gail from dizoo.box2d.bipedalwalker.config import bipedalwalker_sac_config, bipedalwalker_sac_create_config expert_main_config = bipedalwalker_sac_config expert_create_config = bipedalwalker_sac_create_config serial_pipeline_gail( [main_config, create_config], [expert_main_config, expert_create_config], seed=0, collect_data=True )