from easydict import EasyDict lunarlander_trex_ppo_config = dict( exp_name='lunarlander_trex_offppo_seed0', env=dict( collector_env_num=8, evaluator_env_num=8, env_id='LunarLander-v2', n_evaluator_episode=8, stop_value=200, ), reward_model=dict( type='trex', min_snippet_length=30, max_snippet_length=100, checkpoint_min=1000, checkpoint_max=9000, checkpoint_step=1000, learning_rate=1e-5, update_per_collect=1, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. # However, here in ``expert_model_path``, it is ``exp_name`` of the expert config. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='data_path_placeholder + /lunarlander.params', # Users should add their own data path here. Data path should lead to a file to store data or load the stored data. # Absolute path is recommended. # In DI-engine, it is usually located in ``exp_name`` directory # See ding/entry/application_entry_trex_collect_data.py to collect the data data_path='data_path_placeholder', ), policy=dict( cuda=True, model=dict( obs_shape=8, action_shape=4, ), learn=dict( update_per_collect=4, batch_size=64, learning_rate=0.001, value_weight=0.5, entropy_weight=0.01, clip_ratio=0.2, nstep=1, nstep_return=False, adv_norm=True, ), collect=dict( n_sample=128, unroll_len=1, discount_factor=0.99, gae_lambda=0.95, ), ), ) lunarlander_trex_ppo_config = EasyDict(lunarlander_trex_ppo_config) main_config = lunarlander_trex_ppo_config lunarlander_trex_ppo_create_config = dict( env=dict( type='lunarlander', import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='ppo_offpolicy'), ) lunarlander_trex_ppo_create_config = EasyDict(lunarlander_trex_ppo_create_config) create_config = lunarlander_trex_ppo_create_config if __name__ == '__main__': # Users should first run ``lunarlander_offppo_config.py`` to save models (or checkpoints). # Note: Users should check that the checkpoints generated should include iteration_'checkpoint_min'.pth.tar, iteration_'checkpoint_max'.pth.tar with the interval checkpoint_step # where checkpoint_max, checkpoint_min, checkpoint_step are specified above. import argparse import torch from ding.entry import trex_collecting_data from ding.entry import serial_pipeline_trex parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='please enter abs path for this file') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_args() # The function ``trex_collecting_data`` below is to collect episodic data for training the reward model in trex. trex_collecting_data(args) serial_pipeline_trex([main_config, create_config])