from dizoo.box2d.lunarlander.offline_data.collect_dqn_data_config import main_config, create_config from ding.entry import collect_episodic_demo_data, eval import torch import copy def eval_ckpt(args): config = copy.deepcopy([main_config, create_config]) # eval(config, seed=args.seed, load_path=main_config.policy.learn.learner.hook.load_ckpt_before_run, replay_path='./replay') eval(config, seed=args.seed, load_path=main_config.policy.learn.learner.hook.load_ckpt_before_run) def generate(args): config = copy.deepcopy([main_config, create_config]) state_dict = torch.load(main_config.policy.learn.learner.load_path, map_location='cpu') collect_episodic_demo_data( config, collect_count=main_config.policy.other.replay_buffer.replay_buffer_size, seed=args.seed, expert_data_path=main_config.policy.collect.save_path, state_dict=state_dict ) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('--seed', '-s', type=int, default=0) args = parser.parse_args() eval_ckpt(args) generate(args)