from easydict import EasyDict cartpole_acer_config = dict( exp_name='cartpole_acer_seed0', env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, stop_value=195, ), policy=dict( cuda=False, model=dict( obs_shape=4, action_shape=2, encoder_hidden_size_list=[64, 64], ), # (int) the trajectory length to calculate Q retrace target unroll_len=32, learn=dict( # (int) collect n_sample data, train model update_per_collect times # here we follow ppo serial pipeline update_per_collect=4, # (int) the number of data for a train iteration batch_size=16, learning_rate_actor=0.0005, learning_rate_critic=0.0005, # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 # entropy_weight=0.0001, entropy_weight=0.0, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.9, # (float) additional discounting parameter # (int) the trajectory length to calculate v-trace target # (float) clip ratio of importance weights trust_region=True, c_clip_ratio=10, # (float) clip ratio of importance sampling ), collect=dict( # (int) collect n_sample data, train model n_iteration times n_sample=16, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.9, collector=dict(collect_print_freq=1000, ), ), eval=dict(evaluator=dict(eval_freq=200, )), other=dict(replay_buffer=dict(replay_buffer_size=10000, ), ), ), ) cartpole_acer_config = EasyDict(cartpole_acer_config) main_config = cartpole_acer_config cartpole_acer_create_config = dict( env=dict( type='cartpole', import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], ), env_manager=dict(type='base'), policy=dict(type='acer'), ) cartpole_acer_create_config = EasyDict(cartpole_acer_create_config) create_config = cartpole_acer_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c cartpole_acer_config.py -s 0` from ding.entry import serial_pipeline serial_pipeline((main_config, create_config), seed=0)