import pytest import torch from ding.torch_utils.reshape_helper import fold_batch, unfold_batch, unsqueeze_repeat @pytest.mark.unittest def test_fold_unfold_batch(): T, B, C, H, W = 10, 20, 3, 255, 255 data = torch.randn(T, B, C, H, W) data, batch_dim = fold_batch(data, nonbatch_ndims=3) assert data.shape == (T * B, C, H, W) and batch_dim == (T, B) data = unfold_batch(data, batch_dim) assert data.shape == (T, B, C, H, W) T, B, N = 10, 20, 100 data = torch.randn(T, B, N) data, batch_dim = fold_batch(data, nonbatch_ndims=1) assert data.shape == (T * B, N) and batch_dim == (T, B) data = unfold_batch(data, batch_dim) assert data.shape == (T, B, N) @pytest.mark.unittest def test_unsqueeze_repeat(): T, B, C, H, W = 10, 20, 3, 255, 255 repeat_times = 4 data = torch.randn(T, B, C, H, W) ensembled_data = unsqueeze_repeat(data, repeat_times) assert ensembled_data.shape == (repeat_times, T, B, C, H, W) ensembled_data = unsqueeze_repeat(data, repeat_times, -1) assert ensembled_data.shape == (T, B, C, H, W, repeat_times) ensembled_data = unsqueeze_repeat(data, repeat_times, 2) assert ensembled_data.shape == (T, B, repeat_times, C, H, W)