from easydict import EasyDict cartpole_sqil_config = dict( exp_name='cartpole_sqil_seed0', env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, stop_value=195, ), policy=dict( cuda=False, model=dict( obs_shape=4, action_shape=2, encoder_hidden_size_list=[128, 128, 64], dueling=True, ), nstep=1, discount_factor=0.97, learn=dict(batch_size=64, learning_rate=0.001, alpha=0.12), collect=dict( n_sample=8, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. model_path='cartpole_dqn_seed0/ckpt/eval.pth.tar' ), # note: this is the times after which you learns to evaluate eval=dict(evaluator=dict(eval_freq=50, )), other=dict( eps=dict( type='exp', start=0.95, end=0.1, decay=10000, ), replay_buffer=dict(replay_buffer_size=20000, ), ), ), ) cartpole_sqil_config = EasyDict(cartpole_sqil_config) main_config = cartpole_sqil_config cartpole_sqil_create_config = dict( env=dict( type='cartpole', import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], ), env_manager=dict(type='base'), policy=dict(type='sql'), ) cartpole_sqil_create_config = EasyDict(cartpole_sqil_create_config) create_config = cartpole_sqil_create_config if __name__ == '__main__': # or you can enter `ding -m serial_sqil -c cartpole_sqil_config.py -s 0` # then input the config you used to generate your expert model in the path mentioned above # e.g. spaceinvaders_dqn_config.py from ding.entry import serial_pipeline_sqil from dizoo.classic_control.cartpole.config import cartpole_dqn_config, cartpole_dqn_create_config expert_main_config = cartpole_dqn_config expert_create_config = cartpole_dqn_create_config serial_pipeline_sqil((main_config, create_config), (expert_main_config, expert_create_config), seed=0)