import os import torch import gym import numpy as np from tensorboardX import SummaryWriter from rocket_recycling.rocket import Rocket from ditk import logging from ding.model import VAC from ding.policy import PPOPolicy from ding.envs import DingEnvWrapper, BaseEnvManagerV2, EvalEpisodeReturnWrapper from ding.config import compile_config from ding.framework import task from ding.framework.context import OnlineRLContext from ding.framework.middleware import multistep_trainer, StepCollector, interaction_evaluator, CkptSaver, \ gae_estimator, termination_checker from ding.utils import set_pkg_seed from dizoo.rocket.config.rocket_landing_ppo_config import main_config, create_config class RocketLandingWrapper(gym.Wrapper): def __init__(self, env): super().__init__(env) self._observation_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(8, ), dtype=np.float32) self._action_space = gym.spaces.Discrete(9) self._action_space.seed(0) # default seed self.reward_range = (float('-inf'), float('inf')) def wrapped_rocket_env(task, max_steps): return DingEnvWrapper( Rocket(task=task, max_steps=max_steps), cfg={'env_wrapper': [ lambda env: RocketLandingWrapper(env), lambda env: EvalEpisodeReturnWrapper(env), ]} ) def main(): logging.getLogger().setLevel(logging.INFO) main_config.exp_name = 'rocket_landing_ppo_nseed' main_config.policy.cuda = True print('torch.cuda.is_available(): ', torch.cuda.is_available()) cfg = compile_config(main_config, create_cfg=create_config, auto=True) num_seed = 4 for seed_i in range(num_seed): tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'seed' + str(seed_i))) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env = BaseEnvManagerV2( env_fn=[ lambda: wrapped_rocket_env(cfg.env.task, cfg.env.max_steps) for _ in range(cfg.env.collector_env_num) ], cfg=cfg.env.manager ) evaluator_env = BaseEnvManagerV2( env_fn=[ lambda: wrapped_rocket_env(cfg.env.task, cfg.env.max_steps) for _ in range(cfg.env.evaluator_env_num) ], cfg=cfg.env.manager ) # evaluator_env.enable_save_replay() set_pkg_seed(seed_i, use_cuda=cfg.policy.cuda) model = VAC(**cfg.policy.model) policy = PPOPolicy(cfg.policy, model=model) def _add_scalar(ctx): if ctx.eval_value != -np.inf: tb_logger.add_scalar('evaluator_step/reward', ctx.eval_value, global_step=ctx.env_step) collector_rewards = [ctx.trajectories[i]['reward'] for i in range(len(ctx.trajectories))] collector_mean_reward = sum(collector_rewards) / len(ctx.trajectories) collector_max_reward = max(collector_rewards) collector_min_reward = min(collector_rewards) tb_logger.add_scalar('collecter_step/mean_reward', collector_mean_reward, global_step=ctx.env_step) tb_logger.add_scalar('collecter_step/max_reward', collector_max_reward, global_step=ctx.env_step) tb_logger.add_scalar('collecter_step/min_reward', collector_min_reward, global_step=ctx.env_step) task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(gae_estimator(cfg, policy.collect_mode)) task.use(multistep_trainer(cfg, policy.learn_mode)) task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) # task.use(_add_scalar) task.use(termination_checker(max_env_step=int(3e6))) task.run() if __name__ == "__main__": main()