import gym from ditk import logging from ding.data.model_loader import FileModelLoader from ding.data.storage_loader import FileStorageLoader from ding.model import DQN from ding.policy import DQNPolicy from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2 from ding.data import DequeBuffer from ding.config import compile_config from ding.framework import task, ding_init from ding.framework.context import OnlineRLContext from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ eps_greedy_handler, CkptSaver, ContextExchanger, ModelExchanger, online_logger, termination_checker, \ nstep_reward_enhancer from ding.utils import set_pkg_seed from dizoo.box2d.lunarlander.config.lunarlander_dqn_config import main_config, create_config def main(): logging.getLogger().setLevel(logging.INFO) cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) ding_init(cfg) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env = SubprocessEnvManagerV2( env_fn=[lambda: DingEnvWrapper(gym.make("LunarLander-v2")) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager ) evaluator_env = SubprocessEnvManagerV2( env_fn=[lambda: DingEnvWrapper(gym.make("LunarLander-v2")) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager ) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) policy = DQNPolicy(cfg.policy, model=model) # Consider the case with multiple processes if task.router.is_active: # You can use labels to distinguish between workers with different roles, # here we use node_id to distinguish. if task.router.node_id == 0: task.add_role(task.role.LEARNER) elif task.router.node_id == 1: task.add_role(task.role.EVALUATOR) else: task.add_role(task.role.COLLECTOR) # Sync their context and model between each worker. task.use(ContextExchanger(skip_n_iter=1)) task.use(ModelExchanger(model)) # Here is the part of single process pipeline. task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use(eps_greedy_handler(cfg)) task.use(StepCollector(cfg, policy.collect_mode, collector_env)) task.use(nstep_reward_enhancer(cfg)) task.use(data_pusher(cfg, buffer_)) task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) task.use(online_logger(train_show_freq=50)) task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000)) task.use(termination_checker(max_env_step=int(3e6))) task.run() if __name__ == "__main__": main()