from typing import Any, Union, List import copy import numpy as np import gym import competitive_rl from ding.envs import BaseEnv, BaseEnvTimestep, BaseEnvInfo, update_shape from ding.envs.common.env_element import EnvElement, EnvElementInfo from ding.envs.common.common_function import affine_transform from ding.torch_utils import to_ndarray, to_list from .competitive_rl_env_wrapper import BuiltinOpponentWrapper, wrap_env from ding.utils import ENV_REGISTRY competitive_rl.register_competitive_envs() """ The observation spaces: cPong-v0: Box(210, 160, 3) cPongDouble-v0: Tuple(Box(210, 160, 3), Box(210, 160, 3)) cCarRacing-v0: Box(96, 96, 1) cCarRacingDouble-v0: Box(96, 96, 1) The action spaces: cPong-v0: Discrete(3) cPongDouble-v0: Tuple(Discrete(3), Discrete(3)) cCarRacing-v0: Box(2,) cCarRacingDouble-v0: Dict(0:Box(2,), 1:Box(2,)) cPongTournament-v0 """ COMPETITIVERL_INFO_DICT = { 'cPongDouble-v0': BaseEnvInfo( agent_num=1, obs_space=EnvElementInfo( shape=(210, 160, 3), # shape=(4, 84, 84), value={ 'min': 0, 'max': 255, 'dtype': np.float32 }, ), act_space=EnvElementInfo( shape=(1, ), # different with https://github.com/cuhkrlcourse/competitive-rl#usage value={ 'min': 0, 'max': 3, 'dtype': np.float32 }, ), rew_space=EnvElementInfo( shape=(1, ), value={ 'min': np.float32("-inf"), 'max': np.float32("inf"), 'dtype': np.float32 }, ), use_wrappers=None, ), } @ENV_REGISTRY.register('competitive_rl') class CompetitiveRlEnv(BaseEnv): def __init__(self, cfg: dict) -> None: self._cfg = cfg self._env_id = self._cfg.env_id # opponent_type is used to control builtin opponent agent, which is useful in evaluator. is_evaluator = self._cfg.get("is_evaluator", False) opponent_type = None if is_evaluator: opponent_type = self._cfg.get("opponent_type", None) self._builtin_wrap = self._env_id == "cPongDouble-v0" and is_evaluator and opponent_type == "builtin" self._opponent = self._cfg.get('eval_opponent', 'RULE_BASED') self._init_flag = False def reset(self) -> np.ndarray: if not self._init_flag: self._env = self._make_env(only_info=False) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) obs = self._env.reset() obs = to_ndarray(obs) obs = self.process_obs(obs) # process if self._builtin_wrap: self._eval_episode_return = np.array([0.]) else: self._eval_episode_return = np.array([0., 0.]) return obs def close(self) -> None: if self._init_flag: self._env.close() self._init_flag = False def seed(self, seed: int, dynamic_seed: bool = True) -> None: self._seed = seed self._dynamic_seed = dynamic_seed np.random.seed(self._seed) def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: action = to_ndarray(action) action = self.process_action(action) # process obs, rew, done, info = self._env.step(action) if not isinstance(rew, tuple): rew = [rew] rew = np.array(rew) self._eval_episode_return += rew obs = to_ndarray(obs) obs = self.process_obs(obs) # process if done: info['eval_episode_return'] = self._eval_episode_return return BaseEnvTimestep(obs, rew, done, info) def info(self) -> BaseEnvInfo: if self._env_id in COMPETITIVERL_INFO_DICT: info = copy.deepcopy(COMPETITIVERL_INFO_DICT[self._env_id]) info.use_wrappers = self._make_env(only_info=True) obs_shape, act_shape, rew_shape = update_shape( info.obs_space.shape, info.act_space.shape, info.rew_space.shape, info.use_wrappers.split('\n') ) info.obs_space.shape = obs_shape info.act_space.shape = act_shape info.rew_space.shape = rew_shape if not self._builtin_wrap: info.obs_space.shape = (2, ) + info.obs_space.shape info.act_space.shape = (2, ) info.rew_space.shape = (2, ) return info else: raise NotImplementedError('{} not found in COMPETITIVERL_INFO_DICT [{}]'\ .format(self._env_id, COMPETITIVERL_INFO_DICT.keys())) def _make_env(self, only_info=False): return wrap_env(self._env_id, self._builtin_wrap, self._opponent, only_info=only_info) def __repr__(self) -> str: return "DI-engine Competitve RL Env({})".format(self._cfg.env_id) @staticmethod def create_collector_env_cfg(cfg: dict) -> List[dict]: collector_cfg = copy.deepcopy(cfg) collector_env_num = collector_cfg.pop('collector_env_num', 1) collector_cfg.is_evaluator = False return [collector_cfg for _ in range(collector_env_num)] @staticmethod def create_evaluator_env_cfg(cfg: dict) -> List[dict]: evaluator_cfg = copy.deepcopy(cfg) evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) evaluator_cfg.is_evaluator = True return [evaluator_cfg for _ in range(evaluator_env_num)] def process_action(self, action: np.ndarray) -> Union[tuple, dict, np.ndarray]: # If in double agent env, transfrom action passed in from outside to tuple or dict type. if self._env_id == "cPongDouble-v0" and not self._builtin_wrap: return (action[0].squeeze(), action[1].squeeze()) elif self._env_id == "cCarRacingDouble-v0": return {0: action[0].squeeze(), 1: action[1].squeeze()} else: return action.squeeze() def process_obs(self, obs: Union[tuple, np.ndarray]) -> Union[tuple, np.ndarray]: # Copy observation for car racing double agent env, in case to be in alignment with pong double agent env. if self._env_id == "cCarRacingDouble-v0": obs = np.stack([obs, copy.deepcopy(obs)]) return obs