# You can conduct Experiments on D4RL with this config file through the following command: # cd ../entry && python d4rl_td3_bc_main.py from easydict import EasyDict main_config = dict( exp_name='halfcheetah_medium_replay_td3-bc_seed0', env=dict( env_id='halfcheetah-medium-replay-v2', norm_obs=dict( use_norm=True, offline_stats=dict(use_offline_stats=True, ), ), collector_env_num=1, evaluator_env_num=8, use_act_scale=True, n_evaluator_episode=8, stop_value=6000, ), policy=dict( cuda=True, model=dict( obs_shape=17, action_shape=6, ), learn=dict( train_epoch=30000, batch_size=256, learning_rate_actor=0.0003, learning_rate_critic=0.0003, actor_update_freq=2, noise=True, noise_sigma=0.2, noise_range={ 'min': -0.5, 'max': 0.5 }, alpha=2.5, ), collect=dict( data_type='d4rl', data_path=None, ), eval=dict(evaluator=dict(eval_freq=10000, )), other=dict(replay_buffer=dict(replay_buffer_size=2000000, ), ), ), ) main_config = EasyDict(main_config) main_config = main_config create_config = dict( env=dict( type='d4rl', import_names=['dizoo.d4rl.envs.d4rl_env'], ), env_manager=dict( cfg_type='BaseEnvManagerDict', type='base', ), policy=dict( type='td3_bc', import_names=['ding.policy.td3_bc'], ), replay_buffer=dict(type='naive', ), ) create_config = EasyDict(create_config) create_config = create_config