import pytest import numpy as np from easydict import EasyDict from dizoo.gym_anytrading.envs import StocksEnv @pytest.mark.envtest class TestStocksEnv: def test_naive(self): env = StocksEnv(EasyDict({"env_id": 'stocks-v0', "eps_length": 300,\ "window_size": 20, "train_range": None, "test_range": None, "stocks_data_filename": 'STOCKS_GOOGL'})) env.seed(314, dynamic_seed=False) assert env._seed == 314 obs = env.reset() assert obs.shape == (62, ) for _ in range(5): env.reset() np.random.seed(314) print('=' * 60) for i in range(10): # Both ``env.random_action()``, and utilizing ``np.random`` as well as action space, # can generate legal random action. if i < 5: random_action = np.array([env.action_space.sample()]) else: random_action = env.random_action() timestep = env.step(random_action) print(timestep) assert isinstance(timestep.obs, np.ndarray) assert isinstance(timestep.done, bool) assert timestep.obs.shape == (62, ) assert timestep.reward.shape == (1, ) assert timestep.reward >= env.reward_space.low assert timestep.reward <= env.reward_space.high print(env.observation_space, env.action_space, env.reward_space) env.close()