from easydict import EasyDict # The typical MiniGrid env id: {'MiniGrid-Empty-8x8-v0', 'MiniGrid-FourRooms-v0', 'MiniGrid-DoorKey-8x8-v0','MiniGrid-DoorKey-16x16-v0'}, # please refer to https://github.com/Farama-Foundation/MiniGrid for details. env_name = 'MiniGrid-Empty-8x8-v0' max_env_step = int(1e6) # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== seed = 0 collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 continuous_action_space = False K = 5 # num_of_sampled_actions num_simulations = 50 update_per_collect = 200 batch_size = 256 reanalyze_ratio = 0 random_collect_episode_num = 0 td_steps = 5 policy_entropy_loss_weight = 0. threshold_training_steps_for_final_temperature = int(5e5) eps_greedy_exploration_in_collect = False # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== minigrid_sampled_efficientzero_config = dict( exp_name=f'data_sez_ctree/{env_name}_sampled_efficientzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_seed{seed}', env=dict( env_name=env_name, continuous=False, manually_discretization=False, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), policy=dict( model=dict( observation_shape=2835, action_space_size=7, continuous_action_space=continuous_action_space, num_of_sampled_actions=K, model_type='mlp', lstm_hidden_size=256, latent_state_dim=256, discrete_action_encoding_type='one_hot', norm_type='BN', ), policy_entropy_loss_weight=policy_entropy_loss_weight, eps=dict( eps_greedy_exploration_in_collect=eps_greedy_exploration_in_collect, decay=int(2e5), ), td_steps=td_steps, manual_temperature_decay=True, threshold_training_steps_for_final_temperature=threshold_training_steps_for_final_temperature, cuda=True, env_type='not_board_games', game_segment_length=50, update_per_collect=update_per_collect, batch_size=batch_size, optim_type='Adam', lr_piecewise_constant_decay=False, learning_rate=0.003, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, n_episode=n_episode, eval_freq=int(2e2), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) minigrid_sampled_efficientzero_config = EasyDict(minigrid_sampled_efficientzero_config) main_config = minigrid_sampled_efficientzero_config minigrid_sampled_efficientzero_create_config = dict( env=dict( type='minigrid_lightzero', import_names=['zoo.minigrid.envs.minigrid_lightzero_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='sampled_efficientzero', import_names=['lzero.policy.sampled_efficientzero'], ), collector=dict( type='episode_muzero', import_names=['lzero.worker.muzero_collector'], ) ) minigrid_sampled_efficientzero_create_config = EasyDict(minigrid_sampled_efficientzero_create_config) create_config = minigrid_sampled_efficientzero_create_config if __name__ == "__main__": # Users can use different train entry by specifying the entry_type. entry_type = "train_muzero" # options={"train_muzero", "train_muzero_with_gym_env"} if entry_type == "train_muzero": from lzero.entry import train_muzero elif entry_type == "train_muzero_with_gym_env": """ The ``train_muzero_with_gym_env`` entry means that the environment used in the training process is generated by wrapping the original gym environment with LightZeroEnvWrapper. Users can refer to lzero/envs/wrappers for more details. """ from lzero.entry import train_muzero_with_gym_env as train_muzero train_muzero([main_config, create_config], seed=seed, max_env_step=max_env_step)