from easydict import EasyDict # The typical MiniGrid env id: {'MiniGrid-Empty-8x8-v0', 'MiniGrid-FourRooms-v0', 'MiniGrid-DoorKey-8x8-v0','MiniGrid-DoorKey-16x16-v0'}, # please refer to https://github.com/Farama-Foundation/MiniGrid for details. env_name = 'MiniGrid-Empty-8x8-v0' max_env_step = int(1e6) # ============================================================== # begin of the most frequently changed config specified by the user # ============================================================== seed = 0 collector_env_num = 8 n_episode = 8 evaluator_env_num = 3 num_simulations = 50 update_per_collect = 200 batch_size = 256 reanalyze_ratio = 0 td_steps = 5 # key exploration related config policy_entropy_loss_weight = 0. threshold_training_steps_for_final_temperature = int(5e5) eps_greedy_exploration_in_collect = True input_type = 'obs' # options=['obs', 'latent_state', 'obs_latent_state'] target_model_for_intrinsic_reward_update_type = 'assign' # 'assign' or 'momentum' # ============================================================== # end of the most frequently changed config specified by the user # ============================================================== minigrid_muzero_rnd_config = dict( exp_name=f'data_mz_rnd_ctree/{env_name}_muzero-rnd_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}' f'_collect-eps-{eps_greedy_exploration_in_collect}_temp-final-steps-{threshold_training_steps_for_final_temperature}_pelw{policy_entropy_loss_weight}' f'_rnd-rew-{input_type}-{target_model_for_intrinsic_reward_update_type}_seed{seed}', env=dict( stop_value=int(1e6), env_name=env_name, continuous=False, manually_discretization=False, collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, manager=dict(shared_memory=False, ), ), reward_model=dict( type='rnd_muzero', intrinsic_reward_type='add', input_type=input_type, # options=['obs', 'latent_state', 'obs_latent_state'] # intrinsic_reward_weight means the relative weight of RND intrinsic_reward. # Specifically for sparse reward env MiniGrid, in this env, if we reach goal, the agent gets reward ~1, otherwise 0. # We could set the intrinsic_reward_weight approximately equal to the inverse of max_episode_steps.Please refer to rnd_reward_model for details. intrinsic_reward_weight=0.003, # 1/300 obs_shape=2835, latent_state_dim=512, hidden_size_list=[256, 256], learning_rate=3e-3, weight_decay=1e-4, batch_size=batch_size, update_per_collect=200, rnd_buffer_size=int(1e6), input_norm=True, input_norm_clamp_max=5, input_norm_clamp_min=-5, extrinsic_reward_norm=True, extrinsic_reward_norm_max=1, ), policy=dict( model=dict( observation_shape=2835, action_space_size=7, model_type='mlp', lstm_hidden_size=256, latent_state_dim=512, discrete_action_encoding_type='one_hot', norm_type='BN', self_supervised_learning_loss=True, # NOTE: default is False. ), use_rnd_model=True, # RND related config use_momentum_representation_network=True, target_model_for_intrinsic_reward_update_type=target_model_for_intrinsic_reward_update_type, target_update_freq_for_intrinsic_reward=1000, target_update_theta_for_intrinsic_reward=0.005, # key exploration related config policy_entropy_loss_weight=policy_entropy_loss_weight, eps=dict( eps_greedy_exploration_in_collect=eps_greedy_exploration_in_collect, decay=int(2e5), ), manual_temperature_decay=True, threshold_training_steps_for_final_temperature=threshold_training_steps_for_final_temperature, cuda=True, env_type='not_board_games', game_segment_length=300, update_per_collect=update_per_collect, batch_size=batch_size, optim_type='Adam', lr_piecewise_constant_decay=False, learning_rate=0.003, ssl_loss_weight=2, # NOTE: default is 0. td_steps=td_steps, num_simulations=num_simulations, reanalyze_ratio=reanalyze_ratio, n_episode=n_episode, eval_freq=int(2e2), replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, ), ) minigrid_muzero_rnd_config = EasyDict(minigrid_muzero_rnd_config) main_config = minigrid_muzero_rnd_config minigrid_muzero_create_config = dict( env=dict( type='minigrid_lightzero', import_names=['zoo.minigrid.envs.minigrid_lightzero_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='muzero', import_names=['lzero.policy.muzero'], ), collector=dict( type='episode_muzero', import_names=['lzero.worker.muzero_collector'], ) ) minigrid_muzero_create_config = EasyDict(minigrid_muzero_create_config) create_config = minigrid_muzero_create_config if __name__ == "__main__": from lzero.entry import train_muzero_with_reward_model train_muzero_with_reward_model([main_config, create_config], seed=seed, max_env_step=max_env_step)