from typing import Union, Optional, List, Any, Tuple import os import pickle import numpy as np import torch from functools import partial from copy import deepcopy from ding.config import compile_config, read_config from ding.worker import SampleSerialCollector, InteractionSerialEvaluator, EpisodeSerialCollector from ding.envs import create_env_manager, get_vec_env_setting from ding.policy import create_policy from ding.torch_utils import to_device, to_ndarray from ding.utils import set_pkg_seed from ding.utils.data import offline_data_save_type from ding.rl_utils import get_nstep_return_data from ding.utils.data import default_collate def eval( input_cfg: Union[str, Tuple[dict, dict]], seed: int = 0, env_setting: Optional[List[Any]] = None, model: Optional[torch.nn.Module] = None, state_dict: Optional[dict] = None, load_path: Optional[str] = None, replay_path: Optional[str] = None, ) -> float: """ Overview: Pure policy evaluation entry. Evaluate mean episode return and save replay videos. Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ ``BaseEnv`` subclass, collector env config, and evaluator env config. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - state_dict (:obj:`Optional[dict]`): The state_dict of policy or model. - load_path (:obj:`Optional[str]`): Path to load ckpt. - replay_path (:obj:`Optional[str]`): Path to save replay. """ if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) env_fn = None if env_setting is None else env_setting[0] cfg = compile_config( cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, save_path='eval_config.py' ) # Create components: env, policy, evaluator if env_setting is None: env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env, collect=False) else: env_fn, _, evaluator_env_cfg = env_setting evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) evaluator_env.seed(seed, dynamic_seed=False) if replay_path is None: # argument > config replay_path = cfg.env.get('replay_path', None) if replay_path: evaluator_env.enable_save_replay(replay_path) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['eval']) if state_dict is None: if load_path is None: load_path = cfg.policy.learn.learner.load_path state_dict = torch.load(load_path, map_location='cpu') policy.eval_mode.load_state_dict(state_dict) evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode) # Evaluate _, episode_info = evaluator.eval() episode_return = np.mean(episode_info['eval_episode_return']) print('Eval is over! The performance of your RL policy is {}'.format(episode_return)) return episode_return def collect_demo_data( input_cfg: Union[str, dict], seed: int, collect_count: int, expert_data_path: Optional[str] = None, env_setting: Optional[List[Any]] = None, model: Optional[torch.nn.Module] = None, state_dict: Optional[dict] = None, state_dict_path: Optional[str] = None, ) -> None: r""" Overview: Collect demonstration data by the trained policy. Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - collect_count (:obj:`int`): The count of collected data. - expert_data_path (:obj:`str`): File path of the expert demo data will be written to. - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ ``BaseEnv`` subclass, collector env config, and evaluator env config. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - state_dict (:obj:`Optional[dict]`): The state_dict of policy or model. - state_dict_path (:obj:`Optional[str]`): The path of the state_dict of policy or model. """ if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) env_fn = None if env_setting is None else env_setting[0] cfg = compile_config( cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, save_path='collect_demo_data_config.py' ) if expert_data_path is None: expert_data_path = cfg.policy.collect.save_path # Create components: env, policy, collector if env_setting is None: env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False) else: env_fn, collector_env_cfg, _ = env_setting collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) collector_env.seed(seed) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval']) # for policies like DQN (in collect_mode has eps-greedy) # collect_demo_policy = policy.collect_function( # policy._forward_eval, # policy._process_transition, # policy._get_train_sample, # policy._reset_eval, # policy._get_attribute, # policy._set_attribute, # policy._state_dict_collect, # policy._load_state_dict_collect, # ) collect_demo_policy = policy.collect_mode if state_dict is None: assert state_dict_path is not None state_dict = torch.load(state_dict_path, map_location='cpu') policy.collect_mode.load_state_dict(state_dict) collector = SampleSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy) if hasattr(cfg.policy.other, 'eps'): policy_kwargs = {'eps': 0.} else: policy_kwargs = None # Let's collect some expert demonstrations exp_data = collector.collect(n_sample=collect_count, policy_kwargs=policy_kwargs) if cfg.policy.cuda: exp_data = to_device(exp_data, 'cpu') # Save data transitions. offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive')) print('Collect demo data successfully') def collect_episodic_demo_data( input_cfg: Union[str, dict], seed: int, collect_count: int, expert_data_path: str, env_setting: Optional[List[Any]] = None, model: Optional[torch.nn.Module] = None, state_dict: Optional[dict] = None, state_dict_path: Optional[str] = None, ) -> None: r""" Overview: Collect episodic demonstration data by the trained policy. Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - collect_count (:obj:`int`): The count of collected data. - expert_data_path (:obj:`str`): File path of the expert demo data will be written to. - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ ``BaseEnv`` subclass, collector env config, and evaluator env config. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - state_dict (:obj:`Optional[dict]`): The state_dict of policy or model. - state_dict_path (:obj:'str') the abs path of the state dict """ if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) env_fn = None if env_setting is None else env_setting[0] cfg = compile_config( cfg, collector=EpisodeSerialCollector, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, save_path='collect_demo_data_config.py' ) # Create components: env, policy, collector if env_setting is None: env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False) else: env_fn, collector_env_cfg, _ = env_setting collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) collector_env.seed(seed) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval']) collect_demo_policy = policy.collect_mode if state_dict is None: assert state_dict_path is not None state_dict = torch.load(state_dict_path, map_location='cpu') policy.collect_mode.load_state_dict(state_dict) collector = EpisodeSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy) if hasattr(cfg.policy.other, 'eps'): policy_kwargs = {'eps': 0.} else: policy_kwargs = None # Let's collect some expert demonstrations exp_data = collector.collect(n_episode=collect_count, policy_kwargs=policy_kwargs) if cfg.policy.cuda: exp_data = to_device(exp_data, 'cpu') # Save data transitions. offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive')) print('Collect episodic demo data successfully') def episode_to_transitions(data_path: str, expert_data_path: str, nstep: int) -> None: r""" Overview: Transfer episodic data into nstep transitions. Arguments: - data_path (:obj:str): data path that stores the pkl file - expert_data_path (:obj:`str`): File path of the expert demo data will be written to. - nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}. """ with open(data_path, 'rb') as f: _dict = pickle.load(f) # class is list; length is cfg.reward_model.collect_count post_process_data = [] for i in range(len(_dict)): data = get_nstep_return_data(_dict[i], nstep) post_process_data.extend(data) offline_data_save_type( post_process_data, expert_data_path, ) def episode_to_transitions_filter(data_path: str, expert_data_path: str, nstep: int, min_episode_return: int) -> None: r""" Overview: Transfer episodic data into n-step transitions and only take the episode data whose return is larger than min_episode_return. Arguments: - data_path (:obj:str): data path that stores the pkl file - expert_data_path (:obj:`str`): File path of the expert demo data will be written to. - nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}. """ with open(data_path, 'rb') as f: _dict = pickle.load(f) # class is list; length is cfg.reward_model.collect_count post_process_data = [] for i in range(len(_dict)): episode_returns = torch.stack([_dict[i][j]['reward'] for j in range(_dict[i].__len__())], axis=0) if episode_returns.sum() < min_episode_return: continue data = get_nstep_return_data(_dict[i], nstep) post_process_data.extend(data) offline_data_save_type( post_process_data, expert_data_path, )