from typing import Union, Optional, List, Any, Tuple import os import torch from ditk import logging from functools import partial from tensorboardX import SummaryWriter from copy import deepcopy from ding.envs import get_vec_env_setting, create_env_manager from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ create_serial_collector from ding.config import read_config, compile_config from ding.policy import create_policy, PolicyFactory from ding.reward_model import create_reward_model from ding.utils import set_pkg_seed def serial_pipeline_preference_based_irl_onpolicy( input_cfg: Union[str, Tuple[dict, dict]], seed: int = 0, env_setting: Optional[List[Any]] = None, model: Optional[torch.nn.Module] = None, max_train_iter: Optional[int] = int(1e10), max_env_step: Optional[int] = int(1e10), ) -> 'Policy': # noqa """ Overview: Serial pipeline entry for preference based irl of on-policy algorithm(such as PPO). Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ ``BaseEnv`` subclass, collector env config, and evaluator env config. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. Returns: - policy (:obj:`Policy`): Converged policy. """ if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) create_cfg.policy.type = create_cfg.policy.type + '_command' create_cfg.reward_model = dict(type=cfg.reward_model.type) env_fn = None if env_setting is None else env_setting[0] cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, renew_dir=False) # Create main components: env, policy if env_setting is None: env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) else: env_fn, collector_env_cfg, evaluator_env_cfg = env_setting collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) collector_env.seed(cfg.seed) evaluator_env.seed(cfg.seed, dynamic_seed=False) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) # Create worker components: learner, collector, evaluator, replay buffer, commander. tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = create_serial_collector( cfg.policy.collect.collector, env=collector_env, policy=policy.collect_mode, tb_logger=tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) commander = BaseSerialCommander( cfg.policy.other.commander, learner, collector, evaluator, None, policy.command_mode ) reward_model = create_reward_model(cfg, policy.collect_mode.get_attribute('device'), tb_logger) reward_model.train() # ========== # Main loop # ========== # Learner's before_run hook. learner.call_hook('before_run') while True: collect_kwargs = commander.step() # Evaluate policy performance if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break # Collect data by default config n_sample/n_episode new_data = collector.collect(train_iter=learner.train_iter) train_data = new_data # update train_data reward using the augmented reward train_data_augmented = reward_model.estimate(train_data) learner.train(train_data_augmented, collector.envstep) if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: break # Learner's after_run hook. learner.call_hook('after_run') return policy