from typing import Union, Optional, List, Any, Tuple import os import numpy as np import torch from ditk import logging from functools import partial from tensorboardX import SummaryWriter from copy import deepcopy from ding.envs import get_vec_env_setting, create_env_manager from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ create_serial_collector from ding.config import read_config, compile_config from ding.policy import create_policy from ding.reward_model import create_reward_model from ding.utils import set_pkg_seed from .utils import random_collect def serial_pipeline_reward_model_onpolicy( input_cfg: Union[str, Tuple[dict, dict]], seed: int = 0, env_setting: Optional[List[Any]] = None, model: Optional[torch.nn.Module] = None, max_train_iter: Optional[int] = int(1e10), max_env_step: Optional[int] = int(1e10), ) -> 'Policy': # noqa """ Overview: Serial pipeline entry for on-policy RL with reward model. Arguments: - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ ``str`` type means config file path. \ ``Tuple[dict, dict]`` type means [user_config, create_cfg]. - seed (:obj:`int`): Random seed. - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ ``BaseEnv`` subclass, collector env config, and evaluator env config. - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. - max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. - max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. Returns: - policy (:obj:`Policy`): Converged policy. """ if isinstance(input_cfg, str): cfg, create_cfg = read_config(input_cfg) else: cfg, create_cfg = deepcopy(input_cfg) create_cfg.policy.type = create_cfg.policy.type + '_command' env_fn = None if env_setting is None else env_setting[0] cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True) # Create main components: env, policy if env_setting is None: env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) else: env_fn, collector_env_cfg, evaluator_env_cfg = env_setting collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) collector_env.seed(cfg.seed) evaluator_env.seed(cfg.seed, dynamic_seed=False) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) # Create worker components: learner, collector, evaluator, replay buffer, commander. tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = create_serial_collector( cfg.policy.collect.collector, env=collector_env, policy=policy.collect_mode, tb_logger=tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) replay_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) commander = BaseSerialCommander( cfg.policy.other.commander, learner, collector, evaluator, replay_buffer, policy.command_mode ) reward_model = create_reward_model(cfg.reward_model, policy.collect_mode.get_attribute('device'), tb_logger) # ========== # Main loop # ========== # Learner's before_run hook. learner.call_hook('before_run') # Accumulate plenty of data at the beginning of training. if cfg.policy.get('random_collect_size', 0) > 0: random_collect(cfg.policy, policy, collector, collector_env, commander, replay_buffer) count = 0 best_return = -np.inf while True: collect_kwargs = commander.step() # Evaluate policy performance if evaluator.should_eval(learner.train_iter): stop, eval_info = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) eval_return_mean = np.mean(eval_info['eval_episode_return']) if eval_return_mean >= best_return: reward_model.save(path=cfg.exp_name, name='best') best_return = eval_return_mean if stop: break new_data_count, target_new_data_count = 0, cfg.reward_model.get('target_new_data_count', 1) while new_data_count < target_new_data_count: new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) new_data_count += len(new_data) # collect data for reward_model training reward_model.collect_data(new_data) # update reward_model reward_model.train() if count % cfg.reward_model.clear_buffer_per_iters == 0: reward_model.clear_data() # Learn policy from collected data for i in range(cfg.policy.learn.update_per_collect): # Learner will train ``update_per_collect`` times in one iteration. train_data = new_data if train_data is None: # It is possible that replay buffer's data count is too few to train ``update_per_collect`` times logging.warning( "Replay buffer's data can only train for {} steps. ".format(i) + "You can modify data collect config, e.g. increasing n_sample, n_episode." ) break # update train_data reward using the augmented reward train_data_augmented = reward_model.estimate(train_data) learner.train(train_data_augmented, collector.envstep) if learner.policy.get_attribute('priority'): replay_buffer.update(learner.priority_info) if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: break count += 1 # Learner's after_run hook. learner.call_hook('after_run') reward_model.save(path=cfg.exp_name, name='last') return policy