from easydict import EasyDict collector_env_num = 8 evaluator_env_num = 8 qbert_r2d2_config = dict( exp_name='qbert_r2d2_seed0', env=dict( collector_env_num=collector_env_num, evaluator_env_num=evaluator_env_num, n_evaluator_episode=evaluator_env_num, stop_value=int(1e6), env_id='QbertNoFrameskip-v4', #'ALE/Qbert-v5' is available. But special setting is needed after gym make. frame_stack=4 ), policy=dict( cuda=True, priority=True, priority_IS_weight=True, model=dict( obs_shape=[4, 84, 84], action_shape=6, encoder_hidden_size_list=[128, 128, 512], res_link=False, ), discount_factor=0.997, nstep=5, burnin_step=20, # (int) the whole sequence length to unroll the RNN network minus # the timesteps of burnin part, # i.e., = = + learn_unroll_len=80, learn=dict( # according to the R2D2 paper, actor parameter update interval is 400 # environment timesteps, and in per collect phase, we collect sequence # samples, the length of each sequence sample is + , # e.g. if n_sample=32, is 100, thus 32*100/400=8, # we will set update_per_collect=8 in most environments. update_per_collect=8, batch_size=64, learning_rate=0.0005, target_update_theta=0.001, ), collect=dict( # NOTE: It is important that set key traj_len_inf=True here, # to make sure self._traj_len=INF in serial_sample_collector.py. # In sequence-based policy, for each collect_env, # we want to collect data of length self._traj_len=INF # unless the episode enters the 'done' state. # In each collect phase, we collect a total of sequence samples. n_sample=32, traj_len_inf=True, env_num=collector_env_num, ), eval=dict(env_num=evaluator_env_num, ), other=dict( eps=dict( type='exp', start=0.95, end=0.05, decay=1e5, ), replay_buffer=dict( replay_buffer_size=10000, # (Float type) How much prioritization is used: 0 means no prioritization # while 1 means full prioritization alpha=0.6, # (Float type) How much correction is used: 0 means no correction while 1 means full correction beta=0.4, ) ), ), ) qbert_r2d2_config = EasyDict(qbert_r2d2_config) main_config = qbert_r2d2_config qbert_r2d2_create_config = dict( env=dict( type='atari', import_names=['dizoo.atari.envs.atari_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='r2d2'), ) qbert_r2d2_create_config = EasyDict(qbert_r2d2_create_config) create_config = qbert_r2d2_create_config if __name__ == "__main__": # or you can enter ding -m serial -c qbert_r2d2_config.py -s 0 from ding.entry import serial_pipeline serial_pipeline([main_config, create_config], seed=0)