import os from easydict import EasyDict from tensorboardX import SummaryWriter from ding.config import compile_config from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer from ding.envs.env_manager.envpool_env_manager import PoolEnvManager from ding.policy import DQNPolicy from ding.model import DQN from ding.utils import set_pkg_seed from ding.rl_utils import get_epsilon_greedy_fn from dizoo.atari.config.serial import pong_dqn_envpool_config def main(cfg, seed=0, max_iterations=int(1e10)): cfg.exp_name = 'atari_dqn_envpool' cfg = compile_config( cfg, PoolEnvManager, DQNPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer, save_cfg=True ) collector_env_cfg = EasyDict( { 'env_id': cfg.env.env_id, 'env_num': cfg.env.collector_env_num, 'batch_size': cfg.env.collector_batch_size, # env wrappers 'episodic_life': True, # collector: True 'reward_clip': True, # collector: True 'gray_scale': cfg.env.get('gray_scale', True), 'stack_num': cfg.env.get('stack_num', 4), 'frame_skip': cfg.env.get('frame_skip', 4), } ) collector_env = PoolEnvManager(collector_env_cfg) evaluator_env_cfg = EasyDict( { 'env_id': cfg.env.env_id, 'env_num': cfg.env.evaluator_env_num, 'batch_size': cfg.env.evaluator_batch_size, # env wrappers 'episodic_life': False, # evaluator: False 'reward_clip': False, # evaluator: False 'gray_scale': cfg.env.get('gray_scale', True), 'stack_num': cfg.env.get('stack_num', 4), 'frame_skip': cfg.env.get('frame_skip', 4), } ) evaluator_env = PoolEnvManager(evaluator_env_cfg) collector_env.seed(seed) evaluator_env.seed(seed) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) model = DQN(**cfg.policy.model) policy = DQNPolicy(cfg.policy, model=model) tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = SampleSerialCollector( cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) replay_buffer = AdvancedReplayBuffer( cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name, instance_name='replay_buffer' ) eps_cfg = cfg.policy.other.eps epsilon_greedy = get_epsilon_greedy_fn(eps_cfg.start, eps_cfg.end, eps_cfg.decay, eps_cfg.type) while True: if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break eps = epsilon_greedy(collector.envstep) new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs={'eps': eps}) replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) for i in range(cfg.policy.learn.update_per_collect): batch_size = learner.policy.get_attribute('batch_size') train_data = replay_buffer.sample(batch_size, learner.train_iter) if train_data is not None: learner.train(train_data, collector.envstep) if __name__ == "__main__": main(EasyDict(pong_dqn_envpool_config))