from easydict import EasyDict nstep = 3 lunarlander_acer_config = dict( exp_name='lunarlander_acer_seed0', env=dict( # Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' # Env number respectively for collector and evaluator. collector_env_num=8, evaluator_env_num=8, env_id='LunarLander-v2', n_evaluator_episode=8, stop_value=200, ), policy=dict( # Whether to use cuda for network. cuda=False, # Model config used for model creating. Remember to change this, # especially "obs_shape" and "action_shape" according to specific env. model=dict( obs_shape=8, action_shape=4, encoder_hidden_size_list=[512, 64], # Whether to use dueling head. ), # Reward's future discount facotr, aka. gamma. discount_factor=0.99, # How many steps in td error. nstep=nstep, unroll_len=32, # learn_mode config learn=dict( # (int) collect n_sample data, train model update_per_collect times # here we follow impala serial pipeline update_per_collect=10, # (int) the number of data for a train iteration batch_size=32, # grad_clip_type='clip_norm', # clip_value=10, learning_rate_actor=0.0001, learning_rate_critic=0.0001, # (float) loss weight of the value network, the weight of policy network is set to 1 # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 entropy_weight=0.0, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.99, # (float) additional discounting parameter # (int) the trajectory length to calculate v-trace target # (float) clip ratio of importance weights c_clip_ratio=10, ), collect=dict( # (int) collect n_sample data, train model n_iteration times n_sample=16, # (float) discount factor for future reward, defaults int [0, 1] discount_factor=0.99, gae_lambda=0.95, collector=dict(collect_print_freq=1000, ), ), eval=dict(evaluator=dict(eval_freq=5000, )), other=dict(replay_buffer=dict(replay_buffer_size=50000, ), ), ), ) lunarlander_acer_config = EasyDict(lunarlander_acer_config) main_config = lunarlander_acer_config lunarlander_acer_create_config = dict( env=dict( type='lunarlander', import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='acer'), replay_buffer=dict(type='naive') ) lunarlander_acer_create_config = EasyDict(lunarlander_acer_create_config) create_config = lunarlander_acer_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c lunarlander_acer_config.py -s 0` from ding.entry import serial_pipeline serial_pipeline([main_config, create_config], seed=0)