from easydict import EasyDict lunarlander_sqil_config = dict( exp_name='lunarlander_sqil_seed0', env=dict( # Whether to use shared memory. Only effective if "env_manager_type" is 'subprocess' collector_env_num=8, evaluator_env_num=8, env_id='LunarLander-v2', n_evaluator_episode=8, stop_value=200, ), policy=dict( cuda=False, model=dict( obs_shape=8, action_shape=4, encoder_hidden_size_list=[128, 128, 64], dueling=True, ), nstep=1, discount_factor=0.97, learn=dict(batch_size=64, learning_rate=0.001, alpha=0.08), collect=dict( n_sample=64, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. model_path='model_path_placeholder', # Cut trajectories into pieces with length "unrol_len". unroll_len=1, ), eval=dict(evaluator=dict(eval_freq=50, )), # note: this is the times after which you learns to evaluate other=dict( eps=dict( type='exp', start=0.95, end=0.1, decay=10000, ), replay_buffer=dict(replay_buffer_size=20000, ), ), ), ) lunarlander_sqil_config = EasyDict(lunarlander_sqil_config) main_config = lunarlander_sqil_config lunarlander_sqil_create_config = dict( env=dict( type='lunarlander', import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='sql'), ) lunarlander_sqil_create_config = EasyDict(lunarlander_sqil_create_config) create_config = lunarlander_sqil_create_config if __name__ == '__main__': # or you can enter `ding -m serial_sqil -c lunarlander_sqil_config.py -s 0` # then input the config you used to generate your expert model in the path mentioned above # e.g. spaceinvaders_dqn_config.py from ding.entry import serial_pipeline_sqil from dizoo.box2d.lunarlander.config import lunarlander_dqn_config, lunarlander_dqn_create_config expert_main_config = lunarlander_dqn_config expert_create_config = lunarlander_dqn_create_config serial_pipeline_sqil([main_config, create_config], [expert_main_config, expert_create_config], seed=0)