from typing import Any, List, Union, Optional import time import gym import copy import numpy as np from easydict import EasyDict from ding.envs import BaseEnv, BaseEnvTimestep from ding.torch_utils import to_ndarray, to_list from ding.utils import ENV_REGISTRY from ding.envs import ObsPlusPrevActRewWrapper @ENV_REGISTRY.register('acrobot') class AcroBotEnv(BaseEnv): def __init__(self, cfg: dict = {}) -> None: self._cfg = cfg self._init_flag = False self._replay_path = None self._observation_space = gym.spaces.Box( low=np.array([-1.0, -1.0, -1.0, -1.0, -12.57, -28.27]), high=np.array([1.0, 1.0, 1.0, 1.0, 12.57, 28.27]), shape=(6, ), dtype=np.float32 ) self._action_space = gym.spaces.Discrete(3) self._action_space.seed(0) # default seed self._reward_space = gym.spaces.Box(low=-1.0, high=0.0, shape=(1, ), dtype=np.float32) def reset(self) -> np.ndarray: if not self._init_flag: self._env = gym.make('Acrobot-v1') if self._replay_path is not None: self._env = gym.wrappers.RecordVideo( self._env, video_folder=self._replay_path, episode_trigger=lambda episode_id: True, name_prefix='rl-video-{}'.format(id(self)) ) self._init_flag = True if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) self._action_space.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) self._action_space.seed(self._seed) self._observation_space = self._env.observation_space self._eval_episode_return = 0 obs = self._env.reset() obs = to_ndarray(obs) return obs def close(self) -> None: if self._init_flag: self._env.close() self._init_flag = False def seed(self, seed: int, dynamic_seed: bool = True) -> None: self._seed = seed self._dynamic_seed = dynamic_seed np.random.seed(self._seed) def step(self, action: Union[int, np.ndarray]) -> BaseEnvTimestep: if isinstance(action, np.ndarray) and action.shape == (1, ): action = action.squeeze() # 0-dim array obs, rew, done, info = self._env.step(action) self._eval_episode_return += rew if done: info['eval_episode_return'] = self._eval_episode_return obs = to_ndarray(obs) rew = to_ndarray([rew]).astype(np.float32) # wrapped to be transfered to a array with shape (1,) return BaseEnvTimestep(obs, rew, done, info) def enable_save_replay(self, replay_path: Optional[str] = None) -> None: if replay_path is None: replay_path = './video' self._replay_path = replay_path def random_action(self) -> np.ndarray: random_action = self.action_space.sample() random_action = to_ndarray([random_action], dtype=np.int64) return random_action @property def observation_space(self) -> gym.spaces.Space: return self._observation_space @property def action_space(self) -> gym.spaces.Space: return self._action_space @property def reward_space(self) -> gym.spaces.Space: return self._reward_space def __repr__(self) -> str: return "DI-engine Acrobot Env"