from easydict import EasyDict cartpole_a2c_config = dict( exp_name='cartpole_a2c_seed0', env=dict( collector_env_num=8, evaluator_env_num=5, n_evaluator_episode=5, stop_value=195, ), policy=dict( cuda=False, # (bool) whether use on-policy training pipeline(behaviour policy and training policy are the same) model=dict( obs_shape=4, action_shape=2, encoder_hidden_size_list=[128, 128, 64], ), learn=dict( batch_size=40, learning_rate=0.001, # (float) loss weight of the entropy regularization, the weight of policy network is set to 1 entropy_weight=0.01, ), collect=dict( # (int) collect n_sample data, train model n_iteration times n_sample=80, # (float) the trade-off factor lambda to balance 1step td and mc gae_lambda=0.95, ), eval=dict(evaluator=dict(eval_freq=50, )), ), ) cartpole_a2c_config = EasyDict(cartpole_a2c_config) main_config = cartpole_a2c_config cartpole_a2c_create_config = dict( env=dict( type='cartpole', import_names=['dizoo.classic_control.cartpole.envs.cartpole_env'], ), env_manager=dict(type='base'), policy=dict(type='a2c'), ) cartpole_a2c_create_config = EasyDict(cartpole_a2c_create_config) create_config = cartpole_a2c_create_config if __name__ == "__main__": # or you can enter `ding -m serial_onpolicy -c cartpole_a2c_config.py -s 0` from ding.entry import serial_pipeline_onpolicy serial_pipeline_onpolicy((main_config, create_config), seed=0)