import os import gym from tensorboardX import SummaryWriter from easydict import EasyDict from copy import deepcopy from ding.config import compile_config from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer from ding.envs import BaseEnvManager, DingEnvWrapper from ding.policy import PPGOffPolicy from ding.model import PPG from ding.utils import set_pkg_seed, deep_merge_dicts from dizoo.classic_control.cartpole.config.cartpole_ppg_config import cartpole_ppg_config def wrapped_cartpole_env(): return DingEnvWrapper( gym.make('CartPole-v0'), EasyDict(env_wrapper='default'), ) def main(cfg, seed=0, max_train_iter=int(1e8), max_env_step=int(1e8)): cfg = compile_config( cfg, BaseEnvManager, PPGOffPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, { 'policy': AdvancedReplayBuffer, 'value': AdvancedReplayBuffer }, save_cfg=True ) collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num collector_env = BaseEnvManager(env_fn=[wrapped_cartpole_env for _ in range(collector_env_num)], cfg=cfg.env.manager) evaluator_env = BaseEnvManager(env_fn=[wrapped_cartpole_env for _ in range(evaluator_env_num)], cfg=cfg.env.manager) collector_env.seed(seed) evaluator_env.seed(seed, dynamic_seed=False) set_pkg_seed(seed, use_cuda=cfg.policy.cuda) model = PPG(**cfg.policy.model) policy = PPGOffPolicy(cfg.policy, model=model) tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) collector = SampleSerialCollector( cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name ) evaluator = InteractionSerialEvaluator( cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name ) policy_buffer = AdvancedReplayBuffer( cfg.policy.other.replay_buffer.policy, tb_logger, exp_name=cfg.exp_name, instance_name='policy_buffer' ) value_buffer = AdvancedReplayBuffer( cfg.policy.other.replay_buffer.value, tb_logger, exp_name=cfg.exp_name, instance_name='value_buffer' ) while True: if evaluator.should_eval(learner.train_iter): stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) if stop: break new_data = collector.collect(train_iter=learner.train_iter) policy_buffer.push(new_data, cur_collector_envstep=collector.envstep) value_buffer.push(deepcopy(new_data), cur_collector_envstep=collector.envstep) for i in range(cfg.policy.learn.update_per_collect): batch_size = learner.policy.get_attribute('batch_size') policy_data = policy_buffer.sample(batch_size['policy'], learner.train_iter) value_data = value_buffer.sample(batch_size['value'], learner.train_iter) if policy_data is not None and value_data is not None: train_data = {'policy': policy_data, 'value': value_data} learner.train(train_data, collector.envstep) policy_buffer.clear() value_buffer.clear() if learner.train_iter >= max_train_iter or collector.envstep >= max_env_step: break if __name__ == "__main__": main(cartpole_ppg_config)