from typing import Any, List, Union, Optional import gym import numpy as np from ding.envs import BaseEnv, BaseEnvTimestep from ding.torch_utils import to_ndarray, to_list from ding.utils import ENV_REGISTRY @ENV_REGISTRY.register('mountain_car') class MountainCarEnv(BaseEnv): """ Implementation of DI-engine's version of the Mountain Car deterministic MDP. Important references that contributed to the creation of this env: > Source code of OpenAI's mountain car gym : https://is.gd/y1FkMT > Gym documentation of mountain car : https://is.gd/29S0dt > Based off DI-engine existing implementation of cartpole_env.py > DI-engine's env creation conventions : https://is.gd/ZHLISj Only __init__ , step, seed and reset are mandatory & impt. The other methods are generally for convenience. """ def __init__(self, cfg: EasyDict) -> None: self._cfg = cfg self._init_flag = False self._replay_path = None # Following specifications from https://is.gd/29S0dt self._observation_space = gym.spaces.Box( low=np.array([-1.2, -0.07]), high=np.array([0.6, 0.07]), shape=(2, ), dtype=np.float32 ) self._action_space = gym.spaces.Discrete(3, start=0) self._reward_space = gym.spaces.Box(low=-1, high=0.0, shape=(1, ), dtype=np.float32) def seed(self, seed: int, dynamic_seed: bool = True) -> None: self._seed = seed self._dynamic_seed = dynamic_seed np.random.seed(self._seed) def reset(self) -> np.ndarray: # Instantiate environment if not already done so if not self._init_flag: self._env = gym.make('MountainCar-v0') self._init_flag = True # Check if we have a valid replay path and save replay video accordingly if self._replay_path is not None: self._env = gym.wrappers.RecordVideo( self._env, video_folder=self._replay_path, episode_trigger=lambda episode_id: True, name_prefix='rl-video-{}'.format(id(self)) ) # Set the seeds for randomization. if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: np_seed = 100 * np.random.randint(1, 1000) self._env.seed(self._seed + np_seed) self._action_space.seed(self._seed + np_seed) elif hasattr(self, '_seed'): self._env.seed(self._seed) self._action_space.seed(self._seed) # Get first observation from original environment obs = self._env.reset() # Convert to numpy array as output obs = to_ndarray(obs).astype(np.float32) # Init final reward : cumulative sum of the real rewards obtained by a whole episode, # used to evaluate the agent Performance on this environment, not used for training. self._eval_episode_return = 0. return obs def step(self, action: np.ndarray) -> BaseEnvTimestep: # Making sure that input action is of numpy ndarray assert isinstance(action, np.ndarray), type(action) # Extract action as int, 0-dim array action = action.squeeze() # Take a step of faith into the unknown! obs, rew, done, info = self._env.step(action) # Cummulate reward self._eval_episode_return += rew # Save final cummulative reward when done. if done: info['eval_episode_return'] = self._eval_episode_return # Making sure we conform to di-engine conventions obs = to_ndarray(obs) rew = to_ndarray([rew]).astype(np.float32) return BaseEnvTimestep(obs, rew, done, info) def close(self) -> None: # If init flag is False, then reset() was never run, no point closing. if self._init_flag: self._env.close() self._init_flag = False def enable_save_replay(self, replay_path: Optional[str] = None) -> None: if replay_path is None: replay_path = './video' self._replay_path = replay_path def random_action(self) -> np.ndarray: random_action = self.action_space.sample() random_action = to_ndarray([random_action], dtype=np.int64) return random_action @property def observation_space(self) -> gym.spaces.Space: return self._observation_space @property def action_space(self) -> gym.spaces.Space: return self._action_space @property def reward_space(self) -> gym.spaces.Space: return self._reward_space def __repr__(self) -> str: return "DI-engine Mountain Car Env"