from ditk import logging from ding.model import ContinuousQAC from ding.policy import SACPolicy from ding.envs import BaseEnvManagerV2 from ding.data import DequeBuffer from ding.config import compile_config from ding.framework import task from ding.framework.context import OnlineRLContext from ding.framework.middleware import data_pusher, StepCollector, interaction_evaluator, \ CkptSaver, OffPolicyLearner, termination_checker from ding.utils import set_pkg_seed from dizoo.dmc2gym.envs.dmc2gym_env import DMC2GymEnv from dizoo.dmc2gym.config.dmc2gym_sac_state_config import main_config, create_config import numpy as np from tensorboardX import SummaryWriter import os def main(): logging.getLogger().setLevel(logging.INFO) main_config.exp_name = 'dmc2gym_sac_state_nseed_5M' main_config.policy.cuda = True cfg = compile_config(main_config, create_cfg=create_config, auto=True) num_seed = 4 for seed_i in range(num_seed): tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'seed' + str(seed_i))) with task.start(async_mode=False, ctx=OnlineRLContext()): collector_env = BaseEnvManagerV2( env_fn=[lambda: DMC2GymEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager ) evaluator_env = BaseEnvManagerV2( env_fn=[lambda: DMC2GymEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager ) set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) model = ContinuousQAC(**cfg.policy.model) buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) policy = SACPolicy(cfg.policy, model=model) def _add_scalar(ctx): if ctx.eval_value != -np.inf: tb_logger.add_scalar('evaluator_step/reward', ctx.eval_value, global_step=ctx.env_step) collector_rewards = [ctx.trajectories[i]['reward'] for i in range(len(ctx.trajectories))] collector_mean_reward = sum(collector_rewards) / len(ctx.trajectories) # collector_max_reward = max(collector_rewards) # collector_min_reward = min(collector_rewards) tb_logger.add_scalar('collecter_step/mean_reward', collector_mean_reward, global_step=ctx.env_step) # tb_logger.add_scalar('collecter_step/max_reward', collector_max_reward, global_step= ctx.env_step) # tb_logger.add_scalar('collecter_step/min_reward', collector_min_reward, global_step= ctx.env_step) tb_logger.add_scalar( 'collecter_step/avg_env_step_per_episode', ctx.env_step / ctx.env_episode, global_step=ctx.env_step ) def _add_train_scalar(ctx): len_train = len(ctx.train_output) cur_lr_q_avg = sum([ctx.train_output[i]['cur_lr_q'] for i in range(len_train)]) / len_train cur_lr_p_avg = sum([ctx.train_output[i]['cur_lr_p'] for i in range(len_train)]) / len_train critic_loss_avg = sum([ctx.train_output[i]['critic_loss'] for i in range(len_train)]) / len_train policy_loss_avg = sum([ctx.train_output[i]['policy_loss'] for i in range(len_train)]) / len_train total_loss_avg = sum([ctx.train_output[i]['total_loss'] for i in range(len_train)]) / len_train tb_logger.add_scalar('learner_step/cur_lr_q_avg', cur_lr_q_avg, global_step=ctx.env_step) tb_logger.add_scalar('learner_step/cur_lr_p_avg', cur_lr_p_avg, global_step=ctx.env_step) tb_logger.add_scalar('learner_step/critic_loss_avg', critic_loss_avg, global_step=ctx.env_step) tb_logger.add_scalar('learner_step/policy_loss_avg', policy_loss_avg, global_step=ctx.env_step) tb_logger.add_scalar('learner_step/total_loss_avg', total_loss_avg, global_step=ctx.env_step) task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) task.use( StepCollector( cfg, policy.collect_mode, collector_env, random_collect_size=cfg.policy.random_collect_size ) ) task.use(_add_scalar) task.use(data_pusher(cfg, buffer_)) task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) task.use(_add_train_scalar) task.use(CkptSaver(policy, cfg.exp_name, train_freq=int(1e5))) task.use(termination_checker(max_env_step=int(5e6))) task.run() if __name__ == "__main__": main()