from easydict import EasyDict ant_trex_sac_config = dict( exp_name='ant_trex_sac_seed0', env=dict( manager=dict(shared_memory=True, reset_inplace=True), env_id='Ant-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=6000, ), reward_model=dict( type='trex', min_snippet_length=30, max_snippet_length=100, checkpoint_min=1000, checkpoint_max=9000, checkpoint_step=1000, learning_rate=1e-5, update_per_collect=1, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='abs_data_path + ./ant.params', continuous=True, # Path to the offline dataset # See ding/entry/application_entry_trex_collect_data.py to collect the data offline_data_path='abs_data_path', ), policy=dict( cuda=True, random_collect_size=10000, model=dict( obs_shape=111, action_shape=8, twin_critic=True, action_space='reparameterization', actor_head_hidden_size=256, critic_head_hidden_size=256, ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_q=1e-3, learning_rate_policy=1e-3, learning_rate_alpha=3e-4, ignore_done=False, target_theta=0.005, discount_factor=0.99, alpha=0.2, reparameterization=True, auto_alpha=False, ), collect=dict( n_sample=1, unroll_len=1, ), command=dict(), eval=dict(), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ), ) ant_trex_sac_config = EasyDict(ant_trex_sac_config) main_config = ant_trex_sac_config ant_trex_sac_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='sac', import_names=['ding.policy.sac'], ), replay_buffer=dict(type='naive', ), ) ant_trex_sac_create_config = EasyDict(ant_trex_sac_create_config) create_config = ant_trex_sac_create_config if __name__ == "__main__": # or you can enter `ding -m serial -c ant_trex_sac_config.py -s 0` from ding.entry import serial_pipeline_trex serial_pipeline_trex((main_config, create_config), seed=0)