from easydict import EasyDict obs_shape = 17 act_shape = 6 halfcheetah_sac_gail_config = dict( exp_name='halfcheetah_sac_gail_seed0', env=dict( env_id='HalfCheetah-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=12000, ), reward_model=dict( input_size=obs_shape + act_shape, hidden_size=256, batch_size=64, learning_rate=1e-3, update_per_collect=100, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='data_path_placeholder+/reward_model/ckpt/ckpt_best.pth.tar', # Users should add their own data path here. Data path should lead to a file to store data or load the stored data. # Absolute path is recommended. # In DI-engine, it is usually located in ``exp_name`` directory data_path='data_path_placeholder', collect_count=300000, ), policy=dict( cuda=True, random_collect_size=25000, model=dict( obs_shape=obs_shape, action_shape=act_shape, twin_critic=True, action_space='reparameterization', actor_head_hidden_size=256, critic_head_hidden_size=256, ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_q=1e-3, learning_rate_policy=1e-3, learning_rate_alpha=3e-4, ignore_done=False, target_theta=0.005, discount_factor=0.99, alpha=0.2, reparameterization=True, auto_alpha=False, ), collect=dict( n_sample=64, unroll_len=1, ), command=dict(), eval=dict(), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ), ) halfcheetah_sac_gail_config = EasyDict(halfcheetah_sac_gail_config) main_config = halfcheetah_sac_gail_config halfcheetah_sac_gail_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='base'), policy=dict( type='sac', import_names=['ding.policy.sac'], ), replay_buffer=dict(type='naive', ), ) halfcheetah_sac_gail_create_config = EasyDict(halfcheetah_sac_gail_create_config) create_config = halfcheetah_sac_gail_create_config if __name__ == "__main__": # or you can enter `ding -m serial_gail -c ant_gail_sac_config.py -s 0` # then input the config you used to generate your expert model in the path mentioned above # e.g. hopper_sac_config.py from ding.entry import serial_pipeline_gail from dizoo.mujoco.config.halfcheetah_sac_config import halfcheetah_sac_config, halfcheetah_sac_create_config expert_main_config = halfcheetah_sac_config expert_create_config = halfcheetah_sac_create_config serial_pipeline_gail( [main_config, create_config], [expert_main_config, expert_create_config], max_env_step=10000000, seed=0, collect_data=True )