from easydict import EasyDict halfCheetah_trex_ppo_config = dict( exp_name='halfcheetah_trex_onppo_seed0', env=dict( env_id='HalfCheetah-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=8, evaluator_env_num=10, n_evaluator_episode=10, stop_value=3000, ), reward_model=dict( min_snippet_length=30, max_snippet_length=100, checkpoint_min=10000, checkpoint_max=90000, checkpoint_step=10000, num_snippets=60000, learning_rate=1e-5, update_per_collect=1, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. # However, here in ``expert_model_path``, it is ``exp_name`` of the expert config. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='data_path_placeholder + /HalfCheetah.params', # Users should add their own data path here. Data path should lead to a file to store data or load the stored data. # Absolute path is recommended. # In DI-engine, it is usually located in ``exp_name`` directory # See ding/entry/application_entry_trex_collect_data.py to collect the data data_path='data_path_placeholder', ), policy=dict( cuda=True, recompute_adv=True, model=dict( obs_shape=17, action_shape=6, action_space='continuous', ), action_space='continuous', learn=dict( epoch_per_collect=10, batch_size=64, learning_rate=3e-4, value_weight=0.5, entropy_weight=0.0, clip_ratio=0.2, adv_norm=True, value_norm=True, # for onppo, when we recompute adv, we need the key done in data to split traj, so we must # use ignore_done=False here, # but when we add key traj_flag in data as the backup for key done, we could choose to use ignore_done=True # for halfcheetah, the length=1000 ignore_done=True, grad_clip_type='clip_norm', grad_clip_value=0.5, ), collect=dict( n_sample=2048, unroll_len=1, discount_factor=0.99, gae_lambda=0.97, ), eval=dict(evaluator=dict(eval_freq=5000, )), ), ) halfCheetah_trex_ppo_config = EasyDict(halfCheetah_trex_ppo_config) main_config = halfCheetah_trex_ppo_config halfCheetah_trex_ppo_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict(type='ppo', ), reward_model=dict(type='trex'), ) halfCheetah_trex_ppo_create_config = EasyDict(halfCheetah_trex_ppo_create_config) create_config = halfCheetah_trex_ppo_create_config if __name__ == '__main__': # Users should first run ``halfcheetah_onppo_config.py`` to save models (or checkpoints). # Note: Users should check that the checkpoints generated should include iteration_'checkpoint_min'.pth.tar, iteration_'checkpoint_max'.pth.tar with the interval checkpoint_step # where checkpoint_max, checkpoint_min, checkpoint_step are specified above. import argparse import torch from ding.entry import trex_collecting_data from ding.entry import serial_pipeline_trex_onpolicy parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='please enter abs path for this file') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_args() # The function ``trex_collecting_data`` below is to collect episodic data for training the reward model in trex. trex_collecting_data(args) serial_pipeline_trex_onpolicy([main_config, create_config])