from easydict import EasyDict halfcheetah_trex_sac_config = dict( exp_name='halfcheetah_trex_sac_seed0', env=dict( env_id='HalfCheetah-v3', norm_obs=dict(use_norm=False, ), norm_reward=dict(use_norm=False, ), collector_env_num=1, evaluator_env_num=8, n_evaluator_episode=8, stop_value=12000, ), reward_model=dict( learning_rate=1e-5, min_snippet_length=30, max_snippet_length=100, checkpoint_min=1000, checkpoint_max=9000, checkpoint_step=1000, update_per_collect=1, # Users should add their own model path here. Model path should lead to a model. # Absolute path is recommended. # In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. # However, here in ``expert_model_path``, it is ``exp_name`` of the expert config. expert_model_path='model_path_placeholder', # Path where to store the reward model reward_model_path='data_path_placeholder + /HalfCheetah.params', # Users should add their own data path here. Data path should lead to a file to store data or load the stored data. # Absolute path is recommended. # In DI-engine, it is usually located in ``exp_name`` directory # See ding/entry/application_entry_trex_collect_data.py to collect the data data_path='data_path_placeholder', ), policy=dict( cuda=True, random_collect_size=10000, model=dict( obs_shape=17, action_shape=6, twin_critic=True, action_space='reparameterization', actor_head_hidden_size=256, critic_head_hidden_size=256, ), learn=dict( update_per_collect=1, batch_size=256, learning_rate_q=1e-3, learning_rate_policy=1e-3, learning_rate_alpha=3e-4, ignore_done=True, target_theta=0.005, discount_factor=0.99, alpha=0.2, reparameterization=True, auto_alpha=False, ), collect=dict( n_sample=1, unroll_len=1, ), command=dict(), eval=dict(), other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), ), ) halfcheetah_trex_sac_config = EasyDict(halfcheetah_trex_sac_config) main_config = halfcheetah_trex_sac_config halfcheetah_trex_sac_create_config = dict( env=dict( type='mujoco', import_names=['dizoo.mujoco.envs.mujoco_env'], ), env_manager=dict(type='subprocess'), policy=dict( type='sac', import_names=['ding.policy.sac'], ), replay_buffer=dict(type='naive', ), reward_model=dict(type='trex'), ) halfcheetah_trex_sac_create_config = EasyDict(halfcheetah_trex_sac_create_config) create_config = halfcheetah_trex_sac_create_config if __name__ == '__main__': # Users should first run ``halfcheetah_sac_config.py`` to save models (or checkpoints). # Note: Users should check that the checkpoints generated should include iteration_'checkpoint_min'.pth.tar, iteration_'checkpoint_max'.pth.tar with the interval checkpoint_step # where checkpoint_max, checkpoint_min, checkpoint_step are specified above. import argparse import torch from ding.entry import trex_collecting_data from ding.entry import serial_pipeline_trex parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='please enter abs path for this file') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_args() # The function ``trex_collecting_data`` below is to collect episodic data for training the reward model in trex. trex_collecting_data(args) serial_pipeline_trex([main_config, create_config])